Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1000
  • Pages: 22-26
  • Share:

Heading: Science for ceramic production

The influence of the hydrothermal method for the synthesis of initial powders using chemical reagents and illite clay as initial components on both the phase composition and structure and some properties of mullite-zirconium ceramics has been studied. It is shown that mullite, ZrO2 tetragonal modification predominates in the sintered ceramic material, there are also closed pores. With an increase in the firing temperature and especially with the addition of illite clay, the sinterability and, consequently, the compressive strength increase. The modulus of elasticity with an increase in the temperature difference up to 1000/20 ° С, as with the addition of illite clay, during thermal shock increases to 35 and 95 GPa, respectively, while at 500/20 - up to 20 and 22 GPa. Tab. 2., ill. 8, bibliography: 16 titles.
Balkevich V.L. Technical ceramics. Moscow: Stroyizdat, 1984.253 p. Kaya C., He JY, Gu X., Butler EG Nanostructured ceramic powder by hydrothermal sythhesis and their applications // Microporous and mesoporous materials. 2002. V. 54. N1-2. P. 37 - 49. Hartmut S., Komarneni S. Mullite // Technology and Engineering. 2006. P. 509. Sahnoune F., Chegaar M., Saab N., Gocuriat P. Algerian kaolinite used for mullite formation // Appl. Clay Sci. 2008. V. 38. P. 304 - 310. Kleebe H.-J., Siegelim F., Straubinger T., Ziegler G. Conversion of Al 2 O 3 - SiO 2 powder mixtures to 3: 2 mullite following the stable and metastable phase diagramm // J. Eur. Ceram. Soc. 2001. V. 21. P. 2521 - 2533. Kong LB, Zhang TS Anizotropic grain growth of mullite in high-energy ball milling powders doped with transation metal oxides // J. Eur. Ceram. Soc. 2003. V. 23. P. 2247 - 2256. Temuujin J., Okada K., Mackenzie KJP Formation of mullite from mechanochemically activated oxides and hydroxides // J. Eur. Ceram. Soc. 1998. V. 18. P. 831 - 835. Grigor'evich EA, Senna M., Kosova N. Soft mechanochemical synthesis: a basis for new chemical technologies // Technology and Engineering. 2001. P. 207. Grisphun EM, Pivinskii Yu. E., Kononova TN Production and service of high-alumina ceramic castables // Refractories and Industrial ceramics. 2000. V. 41.N3-4.P.104- 109. Park HC, Yang TY Preparation of zirconia-mullite composites by an infiltration route // Materials science and Engineering A. 2005. V. 405. P. 233 - 238 . Chen Z., Zhang L., Cheng L. Novel method of adding seeds for preparation of mullite // J. Mat. Proc. Techn. 2005. V. 166. P. 183 - 187. Burgo-Montes O., Moreno R., Colomer MT, Farinas JC Influence of combustion aids on suspension combustion synthesis of mullite powders // J. Eur. Ceram. Soc. 2006. V. 26. P. 3365 - 3372. Geuzens E., Mullens S., Gooymans J. Synthesis and mechanical and tribological characterization of alumina - yttria stabilized zirconia (YSZ) nanocomposites with YSZ synthesized by means of an ageous solution - gel method or a hydrothermal route // J. Eur. Ceram. Soc. 2008. V. 34. P. 1315-1325. Zych C., Haberko K. Filter pressing and sintering of a zirconia nanopowder // J. Eur. Ceram. Soc. 2006. V. 26. P. 373 - 378. Rendtorff NM, Garrido LB, Aglietti EF Thermal shock behavior of dense mullite - zirconia composites obtained by two processing routes // Ceramics International. 2008. V. 34. P. 2017-2024. 16. Sedmale G., Hmelov A., Sperberga I. et al. Hydrothermal synthesis of Al 2 O 3 - SiO 2 - ZrO 2 (Y 2 O 3 ) powder and their application for high-temperature ceramics // Chemine Tecnologija. 2009. V. 1.N 50. P. 56 - 61.

The article can be purchased
electronic!

PDF format

Not on sale

UDK 666.79
Article type: Science for ceramic production
Make a request

Keywords

Use the reference below to cite the publication

G. P. Sedmale and A. B. Khmelev Characteristics of mullite-zirconia ceramics obtained from powders synthesized by hydrothermal method. Steklo i keramika. 2011:84(4):22-26. (in Russ). UDK 666.79