Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1054
  • Pages: 27-31
  • Share:

Heading: Science for ceramic production

The obtained ceramic material of the composition 0.5SrTiO 3 ? 0.5Y 0.1 Zr 0.9 O 2 and the features of its dielectric properties and electrical conductivity have been established. It was found that the material consists of two phases: the cubic Fm phase of zirconium dioxide stabilized by yttrium and the tetragonal I4 / mcm phase of the solid solution SrTi 1 - x Zr x O 3 . At T> 500 K, dielectric relaxation with an activation energy of the process ~ 1.1 eV, which is characteristic of titanium-containing compounds with a perovskite structure, is found. Above ~ 700 K, the specific electrical conductivity of the samples under study increases significantly, which may be associated with an increase in ionic conductivity. The activation energy of electrical conductivity was ~ 1.2 eV, which is consistent with the value of the activation energy of ionic conductivity of zirconium dioxide
Bandyopodhyay SK, Pal AK The effect of grain boundary scattering on the electron transport of aluminum films // J. Phys. D .: Appl. Phys. 1979. V. 12. P. 953? 960. Zhang QG, Zhang X., Cao BY, Fujii M. et al. Influence of grain boundary scattering on the electrical properties of platinum nanofilms // Appl. Phys. Lett. 2006. V. 89. P. 114102-10-0114102-3. Henriquez R, Cancino S, Espinosa A .. et al. Electron grain boundary scattering and the resistivity of nanometric metallic structures // Phys. Rev. B. 2010. V. 82. P. 113409-1-113409-4. Mayadas AV, Shatzkes M. Electrical-resistivuty model for polycrystalline films: the case of arbitrary reflection at external surfaces // Phys. Rev. B. 1970. V. 1. N 4. P. 1382? 1388. Garcia-Barriocanal J., Rivera-Calzada A., Varela M. et al. Tailoring disorder and dimensionality: strategies for improved solid oxide fuel cell electrolytes // Chem. Phys. Chem. 2009. V. 10. P. 1003? 1011. Komolikov Yu. I., Kasheev ID High-strength ceramics based on zirconium dioxide powder // Glass and Ceramics. 2002.? 5 ? 6.S. 194? 198. Komolikov Yu. I., Kashcheev ID High-Strength Ceramics Based on Zirconium Dioxide Powder // Glass and Ceram. 2002. V. 59. N 5? 6.P. 194? 198. Ivanov ON, Lyubushkin RA, Trusova Ya. V., Danshina EP Physical and technological factors determining the density of composite nanostructured ceramics of the Y? ZrO 2 ? Al 2 O 3 // Glass and ceramics. 2012.? 1.S. 16? 19. Ivanov ON, Lyubushkin RA, Trusova Ya. V., Dan? Shina EP Physical and technological factors determining Y? ZrO 2 ? Al 2 O 3 composite nanostructured ceramic density // Glass and Ceram. 2012. V. 69. N 1? 2.P. 16? 19. Garsia-Barriocanal J., Rivera-Calzada A., Varela M. et al. Colossal ionic conductivity at interfaces of epitaxial ZrO 2 : Y 2 O 3 / SrTiO 3 heterostructures // Chem. Phys. Chem. 2009. V. 10. P. 676? 680. Pennycook T., Oxley MP Seeing oxygen disorder in YSZ / SrTiO 3 colossal ionic conductor heterostructures using EELS // Eur. Phys. J. Appl. Phys. 2011. V. 54. P. 3507? 3511. Zainullina VM, Zhukov VP, Zhukovsky VM, Medvedeva NI Electronic structure and characteristics of ionic conductivity in zirconium dioxide stabilized by calcium and yttrium impurities // Journal of Structural Chemistry. 2000. T. 41.? 1.P. 229? 239. Smolenskiy GA, Bokov VA, Isupov VA et al. Physics of ferroelectric phenomena. L .: Nauka, 1985.348 p. Wu Z., Cao M., Yu H. et al. The microstructure and dielectric properties of xSrZrO 3 ? (1? X) SrTiO 3 ceramics // J. Electroceram. 2008. V. 21. P. 210? 213. Ang C., Yu Z., Cross LE Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO 3 // Phys. Rev. B. 2000. V. 62. N 1.P. 228? 236. Kuwabara M., Goda K., Oshima K. Coexistence of normal and diffuse ferroelectric-paraelectric phase transitions in (Pb, La) TiO 3 ceramics // Phys. Rev. B. 1990. V. 42. N 16.P. 10012? 10015. Bidault O., Goux P., Kchikech M. et al. Space charge relaxation in perovskites // Phys. Rev. B. 1994. V. 49. P. 7868? 7873. Yu Z., Ang C., Vilarinho PM et al. Dielectric properties of Bi doped SrTiO 3 ceramics in the temperature range of 500? 800 K // J. Appl. Phys. 1998. V. 83. P. 4874? 4877. Kang BS, Choi SK, Park CH Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperasture range of 400? 700 oC // J. Appl. Phys. 2003. V. 94. N 3.P. 1904? 1911. Dai X., Li Z., Chan XZ, Lam DJ Dielectric frequency dispersion behavior in flux grown PbTiO 3 single crystals // Ferroelectrics. 1992. V. 135. P. 39? 48. Stumpe R., Wagner D., Bauerle D. Influence of bulk and interface properties on the electric transport in ABO 3 perovskites // Phys. Status Solidi. A. 1983. V. 75. P. 143? 154. Zavodinsky VG On the mechanism of ionic conductivity in stabilized cubic zirconium dioxide // Physics and Technology. 2004.Vol. 46.? 3.S. 441? 445. Tokiy NV, Perekrestov BI, Savina DL, Danilenko IA Concentration and temperature dependence of the energy of oxygen migration in yttrium-stabilized zirconium dioxide // Physics and Technology. 2011.Vol. 53.? 9, p. 1732? 1736.

The article can be purchased
electronic!

PDF format

500 руб

UDK 666.7:537.9
Article type: Science for ceramic production
Make a request

Keywords

Use the reference below to cite the publication

Ivanov O.N., Sydzhaskaya I.V., Lyubushkin R.A. Dipole relaxation and ion condictivity in SrTiO3/Y0,1Zr0,9O2 ceramic system. Steklo i keramika. 2015:88(10):27-31. (in Russ). UDK 666.7:537.9