Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1089
  • Pages: 9-14
  • Share:

Heading: Science for ceramic production

The factors affecting the thermal conductivity of ceramic composite materials based on SiC with additives B 4 C, AlN, Si 3 N 4 , Y 2 O 3 , Al 2 O 3 , HfB 2 , obtained by spark plasma sintering technology with a relative density of 99 & # 37 ;. Thermophysical properties were determined in the temperature range from 20 to 1300 ° C: heat capacity, thermal diffusivity and thermal conductivity of composites. Thermal diffusivity and heat capacity were measured by the laser flash method. The heat capacity measurements are supplemented by the results obtained by DSC and adiabatic calorimeter methods. Thermal conductivity is calculated from the data of thermal diffusivity, heat capacity and density.
1. Kablov E. N. Innovative developments of FSUE? VIAM? SSC RF for the implementation of? Strategic directions for the development of materials and technologies for their processing for the period up to 2030? // Aviation materials and technologies. 2015.? 1 (34). S. 3? 33. 2. Kablov EN Materials for aerospace technology // All materials. Encyclopedic reference book. 2007.? 5.S. 7? 27. 3. Kablov EN, Grashchenkov DV, Isaeva NV, et al. High-temperature structural ceramic composite materials based on glass and ceramics for advanced aircraft products. Glass and Ceramics. 2012.? 4.S. 7? 11. ? Kablov EN, Grashchenkov DV, Isaeva NV et al. Glass and ceramics based high-temperature composite materials for use in aviation technology // Glass and Ceram. 2012. V. 69. N 3? 4.P. 109? 112.? 4. Lebedeva Yu. E., Popovich NV, Orlova LA Protective high-temperature coatings for composite materials based on SiC. Tr. VIAM: electron. scientific and technical magazine. 2013.? 2. Art. 06. 5. Chainikova AS, Orlova LA, Popovich NV et al. Dispersion-strengthened composites based on glass / glass-crystalline matrices: properties and applications (review) // Aviation materials and technologies. 2014.? 3.S. 45? 54. 6. Sorokin O. Yu., Grashchenkov DV, Solntsev S. St., Evdokimov SA Ceramic composite materials with high oxidation resistance for advanced aircraft (review) // Tr. VIAM: electron. scientific and technical magazine. 2014.? 6. Art. 08. 7. Sorokin O. Yu., Solntsev S. St., Evdokimov SA, Osin IV Method of hybrid spark plasma sintering: principle, possibilities, application prospects // Aviation materials and technologies. 2014.? S6. S. 11? 16. 8. Grashchenkov DV, Sorokin O. Yu., Lebedeva Yu. E., Vaganova ML Features of sintering of refractory ceramics based on HfB2 by the method of hybrid spark plasma sintering // Journal of Applied Chemistry, 2015. Vol. 88 .? 3.S. 379? 386. 9. Grashchenkov DV, Vaganova ML, Lebedeva Yu. E. et al. Prospects for the use of high-temperature ceramic and glass-ceramic materials and antioxidant coatings in aviation technology // Bulletin of the VKO concern? Almaz-Antey ?. 2016.? 4.S. 64? 70. 10. Samoilov VM, Vodovozov AN, Smirnov VK, aitsev GG Physical-mechanical and thermophysical properties of ceramic based on SiC // Inorganic materials. 2011.Vol. 47.? 8, p. 1004? 1009. 11. Garshin A. P., Gropyanov V. M., Zaitsev G. P., Semenov S. S. Ceramics for mechanical engineering. Moscow: Nauchtekhlitizdat, 2003.384 p. 12. Paul A., Jayaseelan DD, Venugopal S. et. al. UHTC composites for hypersonic applications // American Ceramic Society Bulletin. 2012. V. 91. N 1. P. 22? 28. 13. Pryamilova EN, Lyamin Yu. B., Poilov VZ Ultra-high-temperature ceramic materials // XIV All-Russian Scientific and Technical Conference? Aerospace Engineering High Technologies and Innovations ?: abstracts. report Perm, 20? November 21, 2013 Perm, 2013.S. 120? 122. 14. Weiguo Li, Tianbao Cheng, Dingyu Li, and Daining Fang. Numerical Simulation for Thermal Shock Resistance of Ultra-High Temperature Ceramics Considering the Effects of Initial Stress Field // Advances in Materials Science and Engineering, 2011. P. 1? 7. 15. ASTM E 1461-92: Determination of the thermal diffusivity of solids by the laser flash method? LFA (01.09.2006). 16. Gurvich ME, Larikov LN, Nozar AI Optimization of the scanning adiabatic calorimeter method. 1981.Vol. 41.? 7, p. 129? 135. 17. Munro, RG, Material properties of sintered ?-SiC, J. Phys. Chem. Ref. Dat. 1997. V. 26. N 5.R. 1195? 1203. 18. Kubashevsky OB, Olkokk S. Metallurgical thermochemistry / per. from English ed. L. A. Shvartsman. Moscow: Metallurgy, 1982.391 p. 19. Holland TGB, Powell R. An internally consistent thermodynamic data set with uncertainties and correlations: 2. Data and results // J. Metamorphic Geol. 1985. N 3.R. 343? 370. 20. Peletskii, V.E., Investigation of the thermal conductivity of silicon nitride, Thermophysics of high temperatures. 1993. T. 31.? 5.P. 727? 730. 21. Litovskiy E. Ya., Puchkelevich NA Teplofizicheskie svoystva ogneuporov: a handbook. Moscow: Metallurgy, 1982.150 p.

The article can be purchased
electronic!

PDF format

500 руб

UDK 666.3.7:629.76:536.21
Article type: Science for ceramic production
Make a request

Keywords

Use the reference below to cite the publication

Loshchinin Yu. V., Lebedeva Yu. E., Slavin A. V. Thermophysic properties of silicon carbide based composite ceramics materials made by sparkplasma sintering (SPS). Steklo i keramika. 2018:91(9):9-14. (in Russ). UDK 666.3.7:629.76:536.21