Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1120
  • Pages: 9-15
  • Share:

Heading: Not-set

The influence of silicon carbide (10 & # 8211; 40 & # 37; by mass) on the physical-mechanical and electro-physical characteristics of composites is considered. The effect of the additive on the radio absorption capacity of the material is assessed by measuring the coefficient of absorption, transmission and reflection of electromagnetic radiation, as well as the dielectric constant of the material. It was found that the introduction to the composition 30 & # 37; by weight silicon carbide increases compressive strength up to 2.4 MPa due to the reinforcing role of silicon carbide needle crystals. Additional dielectric losses and average pore size of the composite with the introduction of 30 & # 37; silicon carbide provide a coefficient of absorption of electromagnetic radiation in the frequency range 120 & # 8211; 250 GHz 95 to 98 & # 37;
V. I. SEMENOVA 1 (This email address is being protected from spambots. You need JavaScript enabled to view it.), Dr. sciences OV KAZMINA 1 , KV DOROZHKIN 2 , Cand. physical-mat. Sci. V. I. SUSLYAEV 2 , Cand. tech. Sciences E. A. SUDAREV 1 , Cand. tech. Sciences N. A. MITINA 1 ; 1 National Research Tomsk Polytechnic University (Tomsk, Russia)
2 National Research Tomsk State University (Tomsk, Russia)
Askerova M. AK, Tarverdiev T. RO, Abdullaev A. G. O. Sources of electromagnetic radiation and their negative impact on human health // Europaische Fachhochschule. 2016.? 1.P. 39? 41. Zvyagina LN, Mozgovoy NV, Efremov VV Electromagnetic safety of urban residents // Information technologies in construction, social and economic systems. 2020.? 1 (19). S. 125? 128. Dyadenko MV, Gelay AI Radiotransparent materials based on titanosilicate glasses // Glass and ceramics. 2017.? 8.C.15? 20. ? Dyadenko MV, Gelai AI Radio-Transparent Materials Based on Titanium Silicate Glass // Glass Ceram. 2017. V. 74, No. 7? 8.P. 273? 277.? Nikolaychuk G.A. Experience in the development and prospects of using wide-range radio-absorbing materials for ground-based equipment // Actual problems of protection and safety: Tr. XXII All-Russia. scientific-practical conf. RARAN. St. Petersburg, 1? April 4, 2019 St. Petersburg, 2019, p. 119? 125. Delfini A., Albano M., Vricella A. Advanced radar absorbing ceramic-based materials for multifunctional applications in space environment // ResearchGate. Materials. 2018. No. 11 (9). Seckin S. Dielectric properties of low-loss polymers for mmW and THz applications // Journal of Infrared, Millimeter, and Terahertz Waves. 2019. V. 40. P. 557? 573. Dong L., Binzhen Z., Junping D. Conformal transparent metamaterials inducing ultra-broadband absorption and polarization conversion // Journal of Infrared, Millimeter, and Terahertz Waves. 2019. V. 40. P. 905? 916. Saveliev A. P., Skvortsov A. N., Enaleeva S. A., Glotov S. V. Application of honeycomb and cellular structures for noise protection at enterprises of the processing industry of the agro-industrial complex // Bulletin of the Mordovian University. 2017.Vol. 27,? 2.S. 215? 223. Vergara DEF, Lopesa BHK, Quirino SF Frequency selective surface properties of microwave new absorbing porous carbon materials embedded in epoxy resin // Materials Research. 2019. V. 22. Suppl. 1. Kazmina O., Dushkina M., Suslyaev V. Porous material for protection from electromagnetic radiation // Intern. Conf. on Physical Mesomechanics of Multilevel Systems 2014. AIP Conf. Proc. 1623.2014. P. 241? 244. Bollen P., Quievy N., Detrembleur C. Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb // Materials & Design. 2016. V. 89. P. 323? 334. Gonz?lez M., Crespo M., Baselga J. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range // Nanoscale. 2016. No. 8 (20). R. 10724? 10730. Pat. RU 176967 U1. Radioelectronic module with a hidden polycrystalline label made of ferrite / VN Startsev; declared 03/06/2017; published on 05.02.2018. 8 p. Devin K.L., Agafonova A.S., Sokolov I.I. Prospects for the use of radio-absorbing materials to ensure electromagnetic compatibility of airborne radio-electronic equipment // Protective and functional coatings. Tr. VIAM. 2020.? 8 (90). S. 94? 100. Chenyu L., Dawei Y., Donald WK, Yongjun X. Electromagnetic wave absorption of silicon carbide based materials // RSC Advances. 2017. No. 2.P. 595? 605. Zhang H., Zhang J., Zhang H. Computation of radar absorbing silicon carbide foams and their silica matrix composites // Computational Materials Science. 2007. V. 38. No. 4.P. 857? 864. Wan-Chong L., Chu-Sen L., Li-Hai L. et al. The electromagnetic wave absorbing properties of the silicon carbide / carbon foam material based on tetrakaidecahedron model // Materials Research Express. 2018. V. 5, No. 11. Semenova VI, Kutugin VA, Kazmina OV Synthesis and properties of porous glass composite modified by silicon carbide. Steklo i keramika. 2020.? 4.S. 10? 18. ? Semenova VI, Kutugin VA, Kaz? Mina OV Synthesis and Properties of Silicon-Carbide-Modified Porous Glass Composite // Glass Ceram. 2020. V. 77, No. 3? 4. P. 127? 134.?

The article can be purchased
electronic!

PDF format

500 руб

UDK 666.1.022.8
Article type: Not-set
Make a request

Keywords

Use the reference below to cite the publication

Semenovа V. I., Kazmina O. V., Dorozkin K. V., Suslyaev V. I., Su-darev E. A., Mitina N. A Physico-Mechanical and Electrophysical Properties of Porous Glass Composites with Silicon Carbide Additives. Steklo i keramika. 2021:94(4):9-15. (in Russ). UDK 666.1.022.8