Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1123
  • Pages: 17-27
  • Share:

Heading: Not-set

A technology has been developed for producing glass microspheres in a plasma reactor based on the wastes of enrichment of ferruginous quartzites KMA. The regularities of the influence of the flow rate of the plasma-forming argon gas and the power of the plasma reactor on the fractional composition have been established. It is shown that with an increase in the flow rate of the plasma-forming gas from 1.5 to 2.5 m3 / h and the current strength from 400 to 500 A due to the processes of coagulation, the amount of the fraction over 630 ?m increases. It has been shown that glass microspheres are enriched in aluminum and calcium oxides and depleted in silicon, magnesium, sodium, potassium, and iron oxides. It was found that under the action of high plasma temperatures, of the order of 9000 & # 150; 12,000 K, there is a complete melting and spherization of the particles with the formation of glass microspheres with a size of 80 to 1250 microns. The following operational parameters of glass microspheres based on the wastes of enrichment of ferruginous quartzites of KMA, such as microhardness, acid resistance and alkali resistance, have been investigated.
Makarov V.N. Ch. 2.146 p. Chanturia V.A., Koryukin B.M. int. conf. Ekaterinburg: Publishing house of the Ural Branch of the Russian Academy of Sciences, 1998.Vol. 3.P. 26? 34. Melkonyan RG, Makarov DV, Suvorova OV Ecological problems of the use of technogenic raw materials in the production of glass and ceramics. Apatity: KNTs RAN, 2016.224 p. Makarov V. N., Krasheninnikov O. N., Gurevich B. I. et al. Construction and technical materials from mineral raw materials of the Kola Peninsula. Apatity: KNTs RAN, 2003. Part 1.234 p. Ch. 2.196 p. Rusina V.V. Mineral binders based on large-tonnage industrial waste. Bratsk: BrGU, 2007.224 p. Melkonyan R.G. Amorphous rocks and glass production. Moscow: NIA Priroda, 2002.266 p. Kuzmina O. V., Vereshchagin V. I., Abiyaka A. N. Foam glass-crystalline materials based on natural and technogenic raw materials. Tomsk: TPU Publishing House, 2014.246 p. Dvorkin L.I., Dvorkin O.L. Building materials from industrial waste. Rostov n / a: Phoenix, 2007.368 p. Sedelnikova MB, Pogrebenkov VM Ceramic pigments based on natural and technogenic mineral raw materials. Tomsk: TPU Publishing House, 2014.262 p. Stolbushkin A. Yu., Karpacheva A. A., Ivanov A. I. Wall ceramic products based on coal preparation waste and iron-containing additives. Novokuznetsk: Inter-Kuzbass, 2011.156 p. Lesovik V.S. Increasing the efficiency of production of building materials taking into account the genesis of rocks. M .: ASV, 2006.526 p. Pak A. A., Krasheninnikov O. N., Sukhorukova R. N. Aerated concrete based on technogenic raw materials from the Kola mining complex. Appatity: KNTs RAN, 2000.84 p. Gurevich BI, Makarov VN, Seregin GV et al. Concrete from secondary raw materials. Apatity: KNTs RAN, 1997.160 p. Suvorova O.V., Melkonyan R.G., Makarova I.V., Makarov D.V. Possibilities and prospects of using mining complex waste for the production of glass and glass-crystalline materials // Ecology of industrial production. 2011.? 1.S. 54? 60. Anisimov VN Waste-free processing of natural and technogenic deposits with mobile technological complexes // Mining industry. 2009.? 4 (86). S. 35? 40. Kotenko EA, Morozov VA, Anisimov VN, Kushnerenko VK Geoecological problems of exploitation of the mining and metallurgical complex of the KMA // Mining industry. 2003.? 2.S. 12? 16. Karapetyan KG Technology of fertilizers and biosorbents based on phosphate glasses: author. dis. ? Dr. tech. Sciences: 05.17.01. SPb., 2020.40 p. Karapetian K., Dzhevaga N. Modern technologies of complex processing of phosphates // ARPN Journal of Engineering and Applied Sciences. 2017. V. 12, No. 15.P. 4588? 4594. Karapetyan K., Dzhevaga N. Technology of processing of apatites in the production of fused phosphates as modern highly effective fertilizers // 17th Intern. Multidisciplinary Scientific GeoConf. SGEM 2017, 29 June? 5 July, Albena, Bulgaria, SGEM 2017 Conference Proceedings. 2017. Albena, 2017. V. 17, Is. 51. P. 939? 946. Minko NI, Morozova II The use of secondary and non-condensed raw materials in the technology of glass materials for construction purposes // Bulletin OSN RAASN. 2014.? 13, p. 42? 49. Minko NI, Zhernovaya NF, Lesovik EV Building and container glass based on artificial sands from KMA quartzite sandstone // Glass and ceramics. 1989.? 12, p. 6? 7. [Min? Ko N. I., Zhernovaya N. F., Lisovik E. V. Constructional and container glasses based on artificial sands from Kursk Magnetic Anomaly quartzitic sandstones // Glass Ceram. 1989. V. 46, No. 12.R. 471? 473]. Minko N. I., Kovalchenko N. A., Pavlenko Z. V., Zhernovaya N. F. Mineral raw materials of KMA? basis for obtaining electrical glass materials // Glass and ceramics. 1997. ? 7, p. 6? 9. [Min? Ko N. I., Koval? Chenko N. A., Pavlenko Z. V., Zhernovaya N. F. Raw materials from the Kursk Magnetic Anomaly region: The basis of glass materials for electrical engineering // Glass Ceram. 1997. V. 54, No. 7.P. 202? 204]. Efimov A.I., Zhukova E.M., Varlamov V.P. Effectiveness of the action of mineralizing additives // Building materials. 1984.? 7, p. 24? 25. Efimov A.I., Nemets I.I. Regulation of rheotechnological properties of clay masses with iron-containing waste // Izvestiya vuzov. Construction. 2000.? 10, p. 53? 57. Shapovalov N. A., Zagorodnyuk L. Kh., Tikunova I. V. et al. Investigation of the possibility of using iron ore flotation waste to obtain mixed cements // Fundamental research. 2013.? 10, p. 1718? 1723. Shchekina A. Yu., Shapovalov NA, Zagorodnyuk L. Kh. Composite binders with the use of waste flotation re-enrichment of ferruginous quartzites // Bulletin of BSTU im. V.G.Shukhov. 2017.? 7, p. 139? 143. Krokhin VP, Bessmertny VS, Panasenko VA et al. Glazed wall ceramics using KMA waste // Glass and ceramics. 1998.? 7, p. 23? 24. Bessmertny V. S., Bondarenko N. I., Bondarenko D. O. et al. Plasma technologies in glass production // Glass and ceramics. 2019.? 7.S. 3? 7. [Bessmertnyi V. S., Bondarenko N. I., Bonda-renko D. O. et al. Plasma Technologies in Glass Production // Glass Ceram. 2019. V. 76, No. 7-8. R. 214? 245]. Volokitin G. G., Skripnikova N. K., Abzaev Yu. A. et al. Investigation of the processes occurring during the plasma-chemical synthesis of high-temperature silicate melts. Pt 1. Analysis of molybdenum ore dressing wastes // Vest. TGASU. 2013. No. 4. P. 197? 202. Volokitin O. G., Vereshchagin V. I., Volokitin G. G. et al. Production of silicate melts with a high silicate module from quartz-feldspar-containing raw materials according to plasma technology // Izv. Vyssn. Uchebn. Zaved., Khim. Khim. Tekh. 2014. V. 57, No. 1.P. 73? 77. Skripnikova NK, Otmakhov VI, Volokitin OG Processes in the plasma-chemical synthesis of refractory silicate materials // Glass and ceramics. 2010.? 1.S. 19? 21. [Skripnikova N. K., Otmakhov V. I., Volokitin O. G. Processes occurring during plasma-chemical synthesis of refractory silicate materials // Glass Ceram. 2010. V. 67, No. 1? 2. P. 19? 21.] Volokitin O. G., Skripnikova N. K., Volokitin G. G. et al. Mineral fiber, obtained in low-temperature plasma assemblies, from the products of burning coal and oil shale // Stroit. Mater. 2013. No. 11.P. 44? 47. Volokitin OG, Volokitin GG, Skripnikova NK, Wolland S. Technology of obtaining mineral fibers by utilizing ash and slag waste and waste oil shale // Glass and ceramics. 2011.? 8.S. 3? 5. [Volokitin G. G., Skripnikova N. K., Volokitin O. G., Volland S. Technology for producing mineral fibers by recycling ash-sludge and oil-shale wastes // Glass Ceram. 2011. V. 68, No. 7-8. P. 239? 241.] Atroshchenko GN, Savinkov VI, Paleari A. et al. Glassy microspheres for nuclear medicine with an increased content of yttrium oxide // Glass and ceramics. 2012.? 2.S. 3? 7. ? Atroshchenko G. N., Savinkov V. I., Paleari A. et al. Glassy microspheres with elevated yttrium oxide content for nuclear medicine // Glass Ceram. 2012. V. 69, No. 1? 2. P. 39? 43.] Sigaev V. N., Atroschenko G. N., Savinkov V. I. et al. Structural rearrangement at the yttrium-depleted surface of HCl-processed yttrium aluminosilicate glass for 90Y-microsphere brachytherapy // Materials Chemistry and Physics. 2012. V. 133, No. 1.P. 24? 28. Pat. ? 2505492 RF. IPC C03B19 / 10. Method of obtaining microspheres from yttrium-aluminosilicate glass for radiotherapy / V.N.Sigaev, G.N. Atroshchenko, V.I.Savinkov, PD Sarkisov. Appl. 06/14/2012; publ. 01/27/2014, Bul. ? 3.7 s. Budov V.M., Egorova L.S.Glass micro-balls. Application, properties, technology // Glass and ceramics. 1993.? 7.S. 2? 5. ? Budov V. V., Egorova L. S. Glass microbeads, application, properties, and technology (Review) // Glass Ceram. 1993. V. 50, No. 7.P. 275? 279.] Krylov VK, Bubnova BG, Vozny SI, Rabenau VV Reasons for contamination of markings made with thermoplastic materials. Stroitel'nye materialy. 2010.? 2.S. 34? 35. Bondarenko DO, Strokova VV, Timoshenko TI, Rozdolskaya IV Plasma-chemical modification of a facing composite material based on hollow glass microspheres with a protective and decorative coating // Perspective materials. 2018.? 8, p. 72? 80.

The article can be purchased
electronic!

PDF format

500 руб

UDK 666.29.056:621.9.04:533.9
Article type: Not-set
Make a request

Keywords

Use the reference below to cite the publication

Bessmertnyi V. S., Zdorenko N. M., Makarov A. V., Bondarenko M. A., Kоchurin D. V., Vorontsov V. M., Cherkasov A. V. Plasma Technology for the Production of Glass Pellets Based on Waste from the Enrichment of Ferruginous Quartzite KMA. Steklo i keramika. 2021:94(7):17-27. (in Russ). UDK 666.29.056:621.9.04:533.9