This article presents the results of a study of the process of cutting mica using ultrashort pulsed laser radia-tion of the picosecond and femtosecond ranges with a wavelength of 1030 nm. The pulses were focused by a small NA lens (NA < 0.1). Optimization of conditions for achieving large-scale processing without microcracks of submicron dimensions along the edges and walls of the cut is carried out at different pulse duration, pulse energy and scanning speed. Samples with a thickness of 0.1 – 0.2 mm were cut out, the de-sired result was achieved without visible heat-affected zones. It has been found that the use of a real-time sample surface tracking system to adjust the focal position throughout the sheet is essential when processing mica in mass production is required
V. S. Kondratenko1, D. L. Saprykin2, O. N. Tretiyakova2, 3, D. N. Tuzhilin2 1MIREA – Russian Technological University (Moscow, Russia) 2“Lasers and Apparatus TM” LLC, (Moscow, Russia) 3Moscow Aviation Institute (National Research University) (Moscow, Russia)
1. Кондратенко В. С., Третьякова О. Н. Проблемы создания новых лазерных технологий. М.: Изд-во МАИ, 2018. 160 с. 2. Кондратенко В. С., Кадомкин В. В., Лу Хунг-Ту и др. Технология лазерной иммерсионной обработки материалов // Приборы. 2020. № 4. С. 1 – 8. 3. Boerner P., Hajri M., Wahl T., et al. Picosecond pulsed laser ablation of dielectric rods: Angle-dependent abla-tion process model for laser micromachining // Journal of Applied Physics. 2019. V. 125. P. 234902. 4. Glezer E. N., Mazur E. Optically produced cross pattern-ing, based on local dislocations inside MgO single crystals // Appl. Phys. Lett. 1997. V. 71. P. 882. 5. Lenzner M., Kr?ger J., Sartania S., et al. Femtosecond Optical Breakdown in Dielectrics // Phys. Rev. Lett. 1998. V. 80. P. 4076. 6. Yunxiang Pan, Xueming Lv, Hongchao Zhang, et al. Millisecond laser machining of transparent materials as-sisted by a nanosecond laser with different delays // Op-tics Letters. 2016. V. 41, No. 12. P. 2807 – 2810. 7. Varel H., Ashkenasi D., Rosenfeld A., et al. Microm-achining of quartz with ultrashort pulses // Applied Phys-ics. A. 1997. V. 65, No. 4. P. 367 – 373. 8. Jia T. Q., Xu Z. Z., Li R. X., Wang H. Z. Mechanisms in fs-laser ablation in fused silica // Journal of Applied Physics. 2004. V. 95. P. 5166. 9. Nolte S., Momma C., Jacobs H., et al. Ablation of metals by ultrashort laser pulses // Journal of the Optical Society of America. B. 1997. V. 14, No. 10. P. 2716 – 2722. 10. Pronko P. P., Dutta S. K., Squier J., et al. Machining of sub-micron holes using a femtosecond laser at 800 nm // Optics Comm. 1995. V. 114. P. 106. 11. Maruo S., Kawata S. Three-dimensional microfabrication by use of single-photon-absorbed polymerization // J. Microelectromech. Syst. 1998. V. 7. P. 411. 12. Juodkazis S., Mizeikis V., Misawa H. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications // J. Appl. Phys. 2009. V. 106, No. 5. P. 1101 – 1115. 13. Linde D. von der, Sokolowski-Tinten K. The physical mechanisms of short-pulse laser ablation // Appl. Surf. Sci. 2000. V. 154–155. P. 1 – 10. 14. Smith N. I., Fujita K., Nakamura O., Kawata S. Generation of calcium waves in living cells by pulsed-laser-induced photodisruption // Appl. Phys. Lett. 2001. V. 78, No. 8. P. 1209 – 1210. 15. Mizeikis V., Juodkazis S., Marcinkevi?ius A., et al. Tai-loring and characterization of photonic crystals // Photo-chemistry Reviews. 2001. V. 2, No. 1. P. 35 – 69. 16. Sun H.-B., Xu Y., Juodkazis S., et al. Arbitrary-lattice photonic crystals created by multiphoton microfabrication // Opt. Lett. 2001. V. 26, No. 6. P. 325 – 332. 17. Dong X.-Z., Zhao Z., Duan X.-M. Kondo T. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing // Appl. Phys. Lett. 2007. V. 91, No. 12. P. 4103. 18. Kaino T. Waveguide fabrication using organic nonlinear optical materials. // J. Opt. A: Pure Appl. Opt. 2000. V. 2, No. 4. P. R1 – R7. 19. Miwa M., Juodkazis S., Kawakami T., et al. Femto-second two-photon stereo-lithography // Appl. Phys. A. 2001. V. 73, No. 5. P. 561 – 565. 20. Glezer E. N., Milosavijevic M., Huang L., et al. Three-dimensional optical storage inside transparent materials // Opt. Lett. 1996. V. 21, No. 24. P. 2023 – 2028. 21. Watanabe M., Sun H.-B., Juodkazis S. et al. Three-dimensional optical data storage in vitreous silica // Jpn. J. Appl. Phys. 1998. V. 37. P. L1527 – L1530. 22. Третьякова О. Н., Шевченко Г. Ю. Создание управ-ляющих программ для автоматизации процессов ла-зерного управляемого термораскалывания полупро-водниковых и диэлектрических материалов // Вест-ник МАИ. 2011. Т. 18, № 6. С. 53 – 67. 23. Новинский А. Е., Шевченко Г. Ю. Программа управ-ления лазерным технологическим оборудованием для резки и сварки: Свидетельство о государственной ре-гистрации программы для ЭВМ № 2013613967. Заяв-ка № 2012661679. Дата поступления 25 декабря 2012 г. Зарегистрировано в реестре программ для ЭВМ 22 апреля 2013 г.
The article can be purchased
electronic!
PDF format
700 руб
UDK 621.7:679.9
Article type:
Not-set
Make a request