Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1130
  • Pages: 20-26
  • Share:

Heading: Not-set

A dense-sintered protoenstatite ceramics based on fluorinated talc was obtained. Influence of BaO and Al2O3 additives on the sinterability, structure and strength of ceramics was investigated. It makes possible to reduce the sintering temperature to 1225 – 1250 °C due to formation of glassy phase. Additive of ZnO intensifies solid phase sintering at 1320 °C.
It significantly improves compressive strength of ceramics up to 660 MPa that exceeds the strength of traditional steatite materials by 3 times.

Sharafeev S. M. – postgraduate student, The Kizhner Research Center, School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Vereschagin V. I. – Doctor of Technical Science, Consulting Professor, The Kizhner Research Center, School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Mezhenin A. V. – student, The Kizhner Research Center, School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

1. Kamutzki F., Schneider S., Barowski J., et al. Sili-cate dielectric ceramics for millimeter wave applications // J. of the European Ceramic Society. 2021. V. 41. P. 3879 – 3894. DOI: 10.1016/j.jeurceramsoc.2021.02.048.
2. Song K. X., Chen X. M., Fan X. C. Effects of Mg/Si Ratio on Microwave Dielectric Characteristics of Forsterite Ceramics // J. of the American Ceramic Society. 2007. V. 90, No. 6. P. 1808 – 1811. DOI: 10.1111/J.1551-2916.2007.01656.X.
3. Song M. E., Kim J. S., Joung M. R., et al. Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics // J. of the American Ceramic Society. 2008. V. 91, No. 8. P. 2747 – 2750. DOI: 10.1111/J.1551-2916.2008.02499.X.
4. Химическая технология керамики / ред. И. Я. Гузман. М.: ООО РИФ «Стройматериалы», 2003. 496 с.
5. Верещагин В. И. Физико-химические критерии оценки и прогнозирования действия модифицирующих добавок в силикатных и оксидных системах // Известия Томского политехнического университета. 2000. Т. 303, Вып. 1. С. 225 – 229.
6. Goel A., Tulyaganov D., Agathopoulos S., et al. Synthesis and characterization of MgSiO3-containing glass-ceramics // Ceramics International. 2007. V. 33, Nо. 8. P. 1481 – 1487. DOI: 10.1016/j.ceramint.2006.05.012.
7. Maeda K., Sera Y., Yasumori A. Effect of molyb-denum and titanium oxides on mechanical and thermal properties of cordierite–enstatite glass-ceramics // J. of Non-Crystalline Solids. 2016. V. 434. P. 13 – 22. DOI: 10.1016/j.jnoncrysol.2015.12.001
8. Do?ler U., Kr?manc M. M., Suvorov D. Phase evolution and microwave dielectric properties of MgO–B2O3–SiO2–based glass–ceramics // Ceramics International. 2012. V. 38, Nо. 2. P. 1019 – 1025. DOI: 10.1016/j.ceramint.2011.08.025.
9. Ullah A., Liu H., Hao H., et al. Effect of Zn substitution on the sintering temperature and microwave dielectric properties of MgSiO3-based ceramics // Ceramics International. 2017. V. 43, Nо. 1. P. 484 – 490. DOI: 10.1016/j.ceramint.2016.09.183.
10. Ullah A., Liu H., Pengcheng Z., et al. Influence of Co substitution on the phase, microstructure, and microwave dielectric properties of MgSiO3 ceramics // J. of Materials Science: Materials in Electronics. 2019. V. 30, Nо. 7. P. 6469 – 6474. DOI: 10.1007/S10854-019-00951-8.
11. Ullah A., Liu H., Hao H., et al. Phase and Micro-structure Evaluation and Microwave Dielectric Properties of Mg1 ? xNixSiO3 Ceramics // J. of Electronic Materials. 2016. V. 45, Nо. 10. P. 5133 – 5139. DOI: 10.1007/ S11664-016-4730-Z.
12. Azevedo C. A., Garridо F, Medeiros M. The effect of mechanochemical activation on the reactivity in the MgO–Al2O3–SiO2 system // J. of Thermal Analysis and Calorimetry. 2006. V. 83, Nо. 3. P. 649 – 655. DOI: 10.1007/s10973-005-7405-1.
13. Погребенкова В. В., Вакалова Т. В., Горбатенко В. В., Грехова М. В. Новый перспективный способ синтеза муллита из каолина // Новые огнеупоры. 2010. № 4. С. 54 – 55.
14. Шарафеев Ш. М., Верещагин В. И. Композиционная цирконовая керамика на основе активированного гидродифторидом аммония сырья // Новые огнеупоры. 2021. № 6. С. 44 – 50.
15. Sharafeev Sh. M., Pogrebenkov V. M. Study of the phase formation in processes of treatment by ammonium hydrofluoride of natural magnesium silicates with different structures // Refractories and Industrial Ceramics. 2020. V. 61, Nо. 2. P. 200 – 206. DOI: 10.1007/s11148-020-00456-6.
16. Диаграммы состояния силикатных систем: справочник. Вып. 1. Двойные системы / Н. А. Торопов, В. П. Барзаковский, В. В. Лапин и др.; ред. Н. А. Торопов. Л.: Наука, 1965. 545 с.
17. Диаграммы состояния силикатных систем: справочник. Вып. 3. Тройные силикатные системы / Н. А. Торопов, В. П. Барзаковский, В. В. Лапин и др.; ред. В. П. Барзаковский. Л.: Наука, 1972. 448 с.

The article can be purchased
electronic!

PDF format

500 руб

DOI: 10.14489/glc.2022.02.pp.020-026
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Sharafeev S. M., Vereschagin V. I., Mezhenin A. V. Ceramics based on fluorinated talc. Steklo i keramika. 2022:95(2):20-26. (in Russ). DOI: 10.14489/glc.2022.02.pp.020-026