Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1130
  • Pages: 40-46
  • Share:

Heading: Not-set

Nickel pyrochlore of the composition Bi2NiTa2O9 was synthesized by the solid-phase reaction method (sp. gr. Fd-3m, a = 10.5238 ?). The process of phase formation of nickel-containing bismuth tantalate Bi2NiTa2O9 with a pyrochlore structure is investigated. The pyrochlore phase synthesis reaction is described by the interaction of orthorhombic bismuth orthotantalate and nickel oxide. Synthesis proceeds mainly at temperatures above 900 °С. The duration of calcination of the preparations leads to the coalescence of grains with the formation of larger particles.
The calcination temperature did not significantly affect the microstructure of the samples. The samples are characterized by a porous dendritic microstructure with a grain size of 0.5 – 1.0 µm. The optimal conditions for obtaining pure pyrochlore can be considered a temperature of 1050 °С and calcination time of 15 hours.

Muraviev V. A. – Bachelor of Chemistry Department, Syktyvkar State University, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Makeev B. A. – Candidate of Geological-Mineralogical Sciences, Researcher at the Laboratory of Mineralogy of the Institute of geology FRC Komi SC UB RAS, Syktyvkar, Russia.E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Krzhizhanovskaya M. G. – Candidate of Geological and Mineralogical Sciences, Associate Professor, Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Korolev R. I. – Senior Lecturer, Department of Radiophysics and Electronics, Syktyvkar State University, Syktyvkar, Russia E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Zhuk N. A. – Candidate of Chemical Sciences, Associate Professor, Senior Researcher of Laboratory of Ceramic Materials Science, Syktyvkar State University, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..

1. Subramanian M. A., Aravamudan G., Subba Rao G. V. Oxide pyrochlores: a review // Prog. Sol. St. Chem. 1983. V. 15. P. 55 – 143.
2. McCauley R. A. Structural Characteristics of Pyrochlore Formation // J. Appl. Phys. 1980. V. 51. P. 290 ? 294.
3. Zou Z., Ye J., Arakawa H. Preparation, structural and optical properties of a new class of compounds, Bi2MNbO7 (M = Al, Ga, In) // Mater. Sci. Engineer. B. 2001. V. 79. P. 83 – 85.
4. Zhang Y., Zhang Z., Zhu X., et al. Dielectric properties and microstructural characterization of cubic pyrochlored bismuth magnesium niobates // Appl. Phys. A. 2013. V. 115. P. 661 – 666.
5. Blanco M. C., Franco D. G., Jalit Y., et al. Synthesis, magnetic properties and M?ssbauer spectroscopy for the pyrochlore family Bi2BB?O7 with B = Cr and Fe and B? = Nb, Ta and Sb // Phys. B: Cond. Mat. 2012. V. 407. P. 3078 – 3080.
6. Khaw C. C., Tan K. B., Lee C. K., West A. R. Phase equilibria and electrical properties of pyrochlore and zirconolite phases in the Bi2O3–ZnO–Ta2O5 system // J. Eur. Ceram. Soc. 2012. V. 32. P. 671 – 680.
7. Vanderah T. A., Lufaso M. W., Adler A. U., et al. Subsolidus phase equilibria and properties in the system Bi2O3 : Mn2O3 ± x : Nb2O5 // J. Sol. St. Chem. 2006. V. 179. P. 3467 – 3477.
8. Valant M., Babu G. S., Vrcon M., et al. Pyrochlore Range from Bi2O3–Fe2O3–TeO3 System for LTCC and Photocatalysis and the Crystal Structure of New Bi3(Fe0.56Te0.44)3O11 // J. Am. Ceram. Soc. 2011. V. 95. P. 644 – 650.
9. Lufaso M. W., Vanderah T. A., Pazos I. M., et al. Phase formation, crystal chemistry, and properties in the system Bi2O3–Fe2O3–Nb2O5 // J. Sol. St. Chem. 2006. V. 179. P. 3900 – 3910.
10. Giampaoli G., Siritanon T., Day B., et al. Temperature independent low loss dielectrics based on quaternary pyrochlore oxides // Prog. Sol. St. Chem. 2018. V. 50. P. 16 – 23.
11. Cann D. P., Randall C. A., Shrout T. R. Investigation of the dielectric properties of bismuth pyrochlores // Sol. St. Commun. 1996. V. 100. P. 529 – 534.
12. Valant M. Dielectric Relaxations in Bi2O3–Nb2O5–NiO Cubic Pyrochlores // J. Am. Ceram. Soc. 2009. V. 92. P. 955 – 958.
13. Youn H.-J., Sogabe T., Randall C. A., et al. Phase Relations and Dielectric Properties in the Bi2O3–ZnO–Ta2O5 System // J. Am. Ceram. Soc. 2001. V. 84. P. 2557 – 2562.
14. Chon M. P., Tan K. B., Khaw C. C., et al. Subsolidus phase equilibria and electrical properties of pyrochlores in the Bi2O3–CuO–Ta2O5 ternary system // J. Alloys Comp. 2016. V. 675. P. 116 – 127.
15. Khaw C. C., Tan K. B., Lee C. K. High tempera-ture dielectric properties of cubic bismuth zinc tantalate // Ceram. Intern. 2009. V. 35. P. 1473 – 1480.
16. Chon M. P., Tan K. B., Zainal Z., et al. Synthesis and Electrical Properties of Zn-substituted Bismuth Copper Tantalate Pyrochlores // Intern. J. Appl. Ceram. Techn. 2016. V. 13. P. 718 – 725.
17. Tan P. Y., Tan K. B., Khaw C., et al. Structural and electrical properties of bismuth magnesium tantalate pyrochlores // Ceram. Intern. 2012. V. 38. P. 5401 – 5409.
18. Jusoh F. A., Tan K. B., Zainal Z., et al. Novel pyrochlores in the Bi2O3–Fe2O3–Ta2O5 (BFT) ternary system: synthesis, structural and electrical properties // J. Mater. Res. Techn. 2020. V. 9. P. 11022 – 11034.
19. Abdullah A., Khalid W., Faradilla W. E., Abdullah S. Z. Synthesis and Characterization of Bismuth Nickel Tantalate Pyrochlore // Appl. Mechanics and Materials. 2015. V. 749. P. 30 – 35.
20. Zhuk N. A., Krzhizhanovskaya M. G., Koroleva A. V., et al. Thermal Expansion, XPS spectra, and structural and electrical properties of a new Bi2NiTa2O9 pyrochlore // Inorgan. Chem. 2021. V. 60. P. 4924 – 4934.
21. Zhuk N. A., Krzhizhanovskaya M. G., Belyy V. A., et al. Phase transformations and thermal expansion of ?- and ?-BiTaO4 and the high-temperature modification ?-BiTaO4 // Chem. Mater. 2020. V. 32. P. 5493 – 5501.
22. Жук Н. А., Бусаргина Я. А., Белый В. А., Макеев Б. А. Влияние оксида меди (II) на микроструктуру и фазовые превращения ортониобата висмута // Стекло и керамика. 2020. № 5. С. 14 – 19.[Zhuk N. A., Busargina Ya. A., Belyi V. A., Makeev B. A. Effect of Copper (II) Oxide on the Microstructure and Phase Transformations of Bismuth Orthoniobate // Glass Ceram. 2020. V. 77. No. 5–6. P. 173 – 177.]

The article can be purchased
electronic!

PDF format

500 руб

DOI: 10.14489/glc.2022.02.pp.040-046
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Muraviev V. A., Makeev B. A., Krzhizhanovskaya M. G., Korolev R. I., Zhuk N. A. Synthesis of Bi2NiTa2O9 with a pyrochlore-type structure. Steklo i keramika. 2022:95(2):40-46. (in Russ). DOI: 10.14489/glc.2022.02.pp.040-046