Ceramics with phase composition after firing in the range of 600 – 900 °C represented by anhydrous calcium sulfate CaSO4, and calcium sodium sulfates (Na0,8Ca0,1)2SO4 and Na6Ca(SO4)4 were obtained from a powder mixture of sodium sulfate Na2SO4 and calcium sulfate dihydrate CaSO4?2H2O, taken at a molar ratio CaSO4?2H2O/Na2SO4 = 1. The phase composition of the powder mixture after homogenization in a planetary mill in an acetone medium, in addition to the starting salts, also included hydrated sodium calcium sulfate Na4Ca(SO4)3?2H2O. When kept in water for 5 and 60 min the mass loss of ceramic sample fired at 700 °C was 15 and 75 % respectively. Ceramics in the Na2O–CaO–SO3 system in the form of granules or complex shapes obtained using 3D printing can be used as a removable (soluble or leachable) porogen and/or a prototype of a porous space with a given architecture when creating porous polymer or inorganic materials.
Safronova T. V. – PhD (Engineering), senior researcher, Department of Chemistry, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia.E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Shatalova T. B. – PhD (Chemistry), associate professor, Department of Chemistry, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia.E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Filippov Ya. Yu. – PhD (Chemistry), senior researcher, Research Institute of Mechanics, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Toshev O. U. – postgraduate student, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Knotko A. V. – Doctor of Science (Chemistry), professor, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Vaimugin L. A. – student, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Savchenkova D. V. – student, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
1. Liu P. S., Chen G. F. Porous materials: processing and applications. Oxford: Butterworth-Heinemann, 2014. 576 p.
2. Zhang X., Bai C., Qiao Y., et al. Porous geopolymer composites: a review // Composites. Pt A: Ap-plied Science and Manufacturing. 2021. V. 150. P. 106629. URL: https://doi.org/10.1016/j.compositesa.2021.106629
3. Gharehghani A., Ghasemi K., Siavashi M., Mehranfar S. Applications of porous materials in combustion systems: A comprehensive and state-of-the-art review // Fuel. 2021. V. 304. P. 121411. URL: https://doi.org/10.1016/j.fuel.2021.121411
4. Amran M., Fediuk R., Murali G., et al. Sound-absorbing acoustic concretes: a review // Sustainability. 2021. V. 13, No. 19. P. 10712. URL: https://doi.org/10.3390/su131910712
5. Rashidi S., Kashefi M. H., Kim K. C., Samimi-Abianeh O. Potentials of porous materials for energy man-agement in heat exchangers: a comprehensive review // Applied energy. 2019. V. 243. P. 206 – 232. URL: https://doi.org/10.1016/j.apenergy.2019.03.200
6. Jodati H., Y?lmaz B., Evis Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features // Ceramics International. 2020. V. 46, No. 10. P. 15725 – 15739. URL: https://doi.org/10.1016/j.ceramint.2020.03.192
7. Feng Y., Zhu S., Mei D., et al. Application of 3D Printing Technology in Bone Tissue Engineering: a review // Current Drug Delivery. 2021. V. 18, No. 7. P. 847 – 861. URL: https://doi.org/10.2174/ 1567201817999201113100322
8. Studart A. R., Gonzenbach U. T., Tervoort E., Gauckler L. J. Processing routes to macroporous ceramics: a review // J. of the American Ceramic Society. 2006. V. 89, No. 6. P. 1771 – 1789. URL: https://doi.org/10.1111/j.1551-2916.2006.01044.x
9. Беляков А. В., Лукин Е. С., Сафронова Т. В. и др. Пористые материалы на основе фосфатов кальция // Стекло и керамика. 2008. № 10. С. 17 – 19. [Belyakov A. V., Lukin E. S., Safronova T. V., et al. Porous materials made from calcium phosphates // Glass Ceram. 2008. V. 65, No. 9 – 10. P. 337 – 339. URL: http://dx.doi.org/10.1007/s10717-009-9086-x]
10. Wang G., Liu H., Liang Y., et al. Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries // Energy Storage Materials. 2021. No. 11. URL: https://doi.org/10.1016/j.ensm.2021.11.021
11. Dele-Afolabi T. T., Hanim M. A., Norkhairunnisa M., et al. Research trend in the development of macroporous ceramic components by pore forming additives from natural organic matters: a short review // Ceramics International. 2017. V. 43, No. 2. P. 1633 – 1649. URL: https://doi.org/10.1016/j.ceramint.2016.10.177
12. Zhao B., Gain A. K., Ding W., et al. A review on metallic porous materials: pore formation, mechanical properties, and their applications // The International Journal of Advanced Manufacturing Technology. 2018. V. 95, No. 5. P. 2641 – 2659. URL: https://doi.org/10.1007/s00170-017-1415-6
13. Kleger N., Cihova M., Masania K., et al. 3D printing of salt as a template for magnesium with structured porosity // Advanced Materials. 2019. V. 31, No. 37. P. 1903783. URL: https://doi.org/10.1002/adma.201903783
14. Hedberg E. L., Mikos A. G. Controlled release of bone growth factors from injectable, biodegradable polymer scaffolds for bone tissue engineering // MRS Online Proceedings Library (OPL). 2000. V. 662. URL: https://doi.org/10.1557/PROC-662-NN3.7
15. Rakovsky A., Gotman I., Rabkin E., Gutmanas E. Y. ?-TCP – polylactide composite scaffolds with high strength and enhanced permeability prepared by a modified salt leaching method // Journal of the mechanical behavior of biomedical materials. 2014. V. 32. P. 89 – 98. URL: https://doi.org/10.1016/j.jmbbm.2013.12.022
16. Sharipova A., Psakhie S. G., Swain S. K., et al. High-strength bioresorbable Fe–Ag nanocomposite scaf-folds: Processing and properties // AIP Conference Proceedings. AIP Publishing LLC. 2015. V. 1683, No. 1. P. 020244. URL: https://doi.org/10.1063/1.4932934
17. Suppes G. M., Deore B. A., Freund M. S. Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications // Langmuir. 2008. V. 24, No. 3. P. 1064 – 1069. URL: https://doi.org/10.1021/la702837j
18. Сафронова Т. В., Белокозенко М. А., Яхеев Ш. О. и др. Керамика на основе порошка CaSO4?2H2O, синтезированного из Ca(NO3)2 и (NH4)2SO4 // Неорганические материалы. 2021. Т. 57, № 8. С. 910 – 917. URL: http://dx.doi.org/10.31857/S0002337X21080273 [Safronova T. V., Belokozenko M. A., Yahyoev Sh O., et al. Ceramics Based on CaSO4?2H2O Powder Synthesized from Ca(NO3)2 and (NH4)2SO4 // Inorganic Materials. 2021. V. 57, No. 8. P. 867 – 873. URL: http://dx.doi.org/10.1134/ S0020168521080112]
19. ICDD (2010). PDF-4+ 2010 (Database) / ed. by Dr. Soorya Kabekkodu, International Centre for Diffraction Data. Newtown Square, PA, USA, 2010. URL: http:// www.icdd.com/products/pdf2.htm
20. Rasmussen S. E., J?rgensen J. E., Lundtoft B. Structures and phase transitions of Na2SO4 // Journal of applied crystallography. 1996. V. 29, No. 1. P. 42 – 47. URL: https://doi.org/10.1107/S0021889895008818
21. Saito Y., Kobayashi K., Maruyama T. Phase transition and electrical properties of Na2SO4 // Solid State Ionics. 1981. V. 3. P. 393 – 396. URL: https://doi.org/10.1016/0167-2738(81)90119-3
22. Brodale G. E., Giauque W. F. Relation of crystal-line forms I, III, IV, and V of anhydrous sodium sulfate as determined by the third law of thermodynamics // The Journal of Physical Chemistry. 1972. V. 76, No. 5. P. 737 – 743. URL: https://doi.org/10.1021/j100649a024
23. Correcher V., Garcia-Guinea J., Lopez-Arce P., Gomez-Ros J. M. Luminescence emission spectra in the temperature range of the structural phase transitions of Na2SO4 // Spectrochimica Acta. Pt A. Molecular and Biomolecular Spectroscopy. 2004. V. 60, No. 7. P. 1431 – 1438. URL: https://doi.org/10.1016/j.saa.2003.08.008
24. Freyer D., Voigt W., K?hnke K. The phase diagram of the system Na2SO4–CaSO4 // European Journal of Solid State and Inorganic Chemistry. 1998. V. 35, No. 10 – 11. P. 595 – 606. URL: https://doi.org/10.1016/S0992-4361(99)80001-0
25. Coursol P., Pelton A. D., Chartrand P., Zamalloa M. The CaSO4–Na2SO4–CaO phase diagram // Canadian metallurgical quarterly. 2005. V. 44, No. 4. P. 537 – 546. URL: https://doi.org/10.1179/cmq.2005.44.4.537
The article can be purchased
electronic!
PDF format
500 руб
DOI: 10.14489/glc.2022.03.pp.009-018
Article type:
Research Article
Make a request