Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1131
  • Pages: 9-18
  • Share:

Heading: Not-set

Ceramics with phase composition after firing in the range of 600 – 900 °C represented by anhydrous calcium sulfate CaSO4, and calcium sodium sulfates (Na0,8Ca0,1)2SO4 and Na6Ca(SO4)4 were obtained from a powder mixture of sodium sulfate Na2SO4 and calcium sulfate dihydrate CaSO4?2H2O, taken at a molar ratio CaSO4?2H2O/Na2SO4 = 1. The phase composition of the powder mixture after homogenization in a planetary mill in an acetone medium, in addition to the starting salts, also included hydrated sodium calcium sulfate Na4Ca(SO4)3?2H2O. When kept in water for 5 and 60 min the mass loss of ceramic sample fired at 700 °C was 15 and 75 % respectively. Ceramics in the Na2O–CaO–SO3 system in the form of granules or complex shapes obtained using 3D printing can be used as a removable (soluble or leachable) porogen and/or a prototype of a porous space with a given architecture when creating porous polymer or inorganic materials.
Safronova T. V. – PhD (Engineering), senior researcher, Department of Chemistry, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia.E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Shatalova T. B. – PhD (Chemistry), associate professor, Department of Chemistry, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia.E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Filippov Ya. Yu. – PhD (Chemistry), senior researcher, Research Institute of Mechanics, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Toshev O. U. – postgraduate student, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Knotko A. V. – Doctor of Science (Chemistry), professor, Materials Science Department, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Vaimugin L. A. – student, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Savchenkova D. V. – student, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
1. Liu P. S., Chen G. F. Porous materials: processing and applications. Oxford: Butterworth-Heinemann, 2014. 576 p.
2. Zhang X., Bai C., Qiao Y., et al. Porous geopolymer composites: a review // Composites. Pt A: Ap-plied Science and Manufacturing. 2021. V. 150. P. 106629. URL: https://doi.org/10.1016/j.compositesa.2021.106629
3. Gharehghani A., Ghasemi K., Siavashi M., Mehranfar S. Applications of porous materials in combustion systems: A comprehensive and state-of-the-art review // Fuel. 2021. V. 304. P. 121411. URL: https://doi.org/10.1016/j.fuel.2021.121411
4. Amran M., Fediuk R., Murali G., et al. Sound-absorbing acoustic concretes: a review // Sustainability. 2021. V. 13, No. 19. P. 10712. URL: https://doi.org/10.3390/su131910712
5. Rashidi S., Kashefi M. H., Kim K. C., Samimi-Abianeh O. Potentials of porous materials for energy man-agement in heat exchangers: a comprehensive review // Applied energy. 2019. V. 243. P. 206 – 232. URL: https://doi.org/10.1016/j.apenergy.2019.03.200
6. Jodati H., Y?lmaz B., Evis Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features // Ceramics International. 2020. V. 46, No. 10. P. 15725 – 15739. URL: https://doi.org/10.1016/j.ceramint.2020.03.192
7. Feng Y., Zhu S., Mei D., et al. Application of 3D Printing Technology in Bone Tissue Engineering: a review // Current Drug Delivery. 2021. V. 18, No. 7. P. 847 – 861. URL: https://doi.org/10.2174/ 1567201817999201113100322
8. Studart A. R., Gonzenbach U. T., Tervoort E., Gauckler L. J. Processing routes to macroporous ceramics: a review // J. of the American Ceramic Society. 2006. V. 89, No. 6. P. 1771 – 1789. URL: https://doi.org/10.1111/j.1551-2916.2006.01044.x
9. Беляков А. В., Лукин Е. С., Сафронова Т. В. и др. Пористые материалы на основе фосфатов кальция // Стекло и керамика. 2008. № 10. С. 17 – 19. [Belyakov A. V., Lukin E. S., Safronova T. V., et al. Porous materials made from calcium phosphates // Glass Ceram. 2008. V. 65, No. 9 – 10. P. 337 – 339. URL: http://dx.doi.org/10.1007/s10717-009-9086-x]
10. Wang G., Liu H., Liang Y., et al. Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries // Energy Storage Materials. 2021. No. 11. URL: https://doi.org/10.1016/j.ensm.2021.11.021
11. Dele-Afolabi T. T., Hanim M. A., Norkhairunnisa M., et al. Research trend in the development of macroporous ceramic components by pore forming additives from natural organic matters: a short review // Ceramics International. 2017. V. 43, No. 2. P. 1633 – 1649. URL: https://doi.org/10.1016/j.ceramint.2016.10.177
12. Zhao B., Gain A. K., Ding W., et al. A review on metallic porous materials: pore formation, mechanical properties, and their applications // The International Journal of Advanced Manufacturing Technology. 2018. V. 95, No. 5. P. 2641 – 2659. URL: https://doi.org/10.1007/s00170-017-1415-6
13. Kleger N., Cihova M., Masania K., et al. 3D printing of salt as a template for magnesium with structured porosity // Advanced Materials. 2019. V. 31, No. 37. P. 1903783. URL: https://doi.org/10.1002/adma.201903783
14. Hedberg E. L., Mikos A. G. Controlled release of bone growth factors from injectable, biodegradable polymer scaffolds for bone tissue engineering // MRS Online Proceedings Library (OPL). 2000. V. 662. URL: https://doi.org/10.1557/PROC-662-NN3.7
15. Rakovsky A., Gotman I., Rabkin E., Gutmanas E. Y. ?-TCP – polylactide composite scaffolds with high strength and enhanced permeability prepared by a modified salt leaching method // Journal of the mechanical behavior of biomedical materials. 2014. V. 32. P. 89 – 98. URL: https://doi.org/10.1016/j.jmbbm.2013.12.022
16. Sharipova A., Psakhie S. G., Swain S. K., et al. High-strength bioresorbable Fe–Ag nanocomposite scaf-folds: Processing and properties // AIP Conference Proceedings. AIP Publishing LLC. 2015. V. 1683, No. 1. P. 020244. URL: https://doi.org/10.1063/1.4932934
17. Suppes G. M., Deore B. A., Freund M. S. Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications // Langmuir. 2008. V. 24, No. 3. P. 1064 – 1069. URL: https://doi.org/10.1021/la702837j
18. Сафронова Т. В., Белокозенко М. А., Яхеев Ш. О. и др. Керамика на основе порошка CaSO4?2H2O, синтезированного из Ca(NO3)2 и (NH4)2SO4 // Неорганические материалы. 2021. Т. 57, № 8. С. 910 – 917. URL: http://dx.doi.org/10.31857/S0002337X21080273 [Safronova T. V., Belokozenko M. A., Yahyoev Sh O., et al. Ceramics Based on CaSO4?2H2O Powder Synthesized from Ca(NO3)2 and (NH4)2SO4 // Inorganic Materials. 2021. V. 57, No. 8. P. 867 – 873. URL: http://dx.doi.org/10.1134/ S0020168521080112]
19. ICDD (2010). PDF-4+ 2010 (Database) / ed. by Dr. Soorya Kabekkodu, International Centre for Diffraction Data. Newtown Square, PA, USA, 2010. URL: http:// www.icdd.com/products/pdf2.htm
20. Rasmussen S. E., J?rgensen J. E., Lundtoft B. Structures and phase transitions of Na2SO4 // Journal of applied crystallography. 1996. V. 29, No. 1. P. 42 – 47. URL: https://doi.org/10.1107/S0021889895008818
21. Saito Y., Kobayashi K., Maruyama T. Phase transition and electrical properties of Na2SO4 // Solid State Ionics. 1981. V. 3. P. 393 – 396. URL: https://doi.org/10.1016/0167-2738(81)90119-3
22. Brodale G. E., Giauque W. F. Relation of crystal-line forms I, III, IV, and V of anhydrous sodium sulfate as determined by the third law of thermodynamics // The Journal of Physical Chemistry. 1972. V. 76, No. 5. P. 737 – 743. URL: https://doi.org/10.1021/j100649a024
23. Correcher V., Garcia-Guinea J., Lopez-Arce P., Gomez-Ros J. M. Luminescence emission spectra in the temperature range of the structural phase transitions of Na2SO4 // Spectrochimica Acta. Pt A. Molecular and Biomolecular Spectroscopy. 2004. V. 60, No. 7. P. 1431 – 1438. URL: https://doi.org/10.1016/j.saa.2003.08.008
24. Freyer D., Voigt W., K?hnke K. The phase diagram of the system Na2SO4–CaSO4 // European Journal of Solid State and Inorganic Chemistry. 1998. V. 35, No. 10 – 11. P. 595 – 606. URL: https://doi.org/10.1016/S0992-4361(99)80001-0
25. Coursol P., Pelton A. D., Chartrand P., Zamalloa M. The CaSO4–Na2SO4–CaO phase diagram // Canadian metallurgical quarterly. 2005. V. 44, No. 4. P. 537 – 546. URL: https://doi.org/10.1179/cmq.2005.44.4.537

The article can be purchased
electronic!

PDF format

500 руб

DOI: 10.14489/glc.2022.03.pp.009-018
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Safronova T. V., Shatalova T. B., Filippov Ya. Yu., Toshev O. U., Knotko A. V., Vaimugin L. A., Savchenkova D. V. Ceramics in the Na2O–CaO–SO3 system as a promising inorganic porogen. Steklo i keramika. 2022:95(3):9-18. (in Russ). DOI: 10.14489/glc.2022.03.pp.009-018