Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1131
  • Pages: 19-25
  • Share:

Heading: Not-set

Studies have been carried out on the topic of obtaining ceramic materials for construction purposes with an anorthite phase. Clay and blast-furnace gas cleaning sludge were used as raw materials. The chemical compositions of raw materials for their use in the production of ceramic products have been studied. The calcium- and iron-containing compounds included in the composition of the gas cleaning sludge contribute to a decrease in the temperature of the formation of solid solutions and the anorthite phase. It has been established that with the addition of sludge up to 80 wt.% into the composition of the ceramic mixture increases the likelihood of an anorthite phase formation. The physico-mechanical parameters of the obtained ceramic samples have been studied. It has been established that the amount of gas cleaning sludge in the composition of the charge is 10 – 40 wt.% allows to obtain products with compressive strength 18 % higher than the control sample. The improvement in physical and mechanical properties is associated with an increase in the amount of the formed anorthite phase, which is confirmed by the data of X-ray phase analysis.
Semenovykh M. A. – Postgraduate student, assistant of Applied Mechanics and Materials Science department, Tomsk State University of Architecture and Building, Tomsk, Russia E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Skripnikova N. K. – PhD, Professor of Applied Mechanics and Materials Science department, Tomsk State University of Architecture and Building, Tomsk, Russia E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Volokitin O. G. – PhD, Professor of Applied Mechanics and Materials Science department, Vice Rector for Academic Affairs, Tomsk State University of Architecture and Building, Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Shekhovtsov V. V. – PhD, associate professor of Applied Mechanics and Materials Science department, Tomsk State University of Architecture and Building, Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
1. Леонтьев Л., Пономарев В., Шешуков О. Переработка и утилизация техногенных отходов металлургического производства // Экология и промышленность России. 2016. Т. 20, № 3. С. 24 – 27.
2. Мухтар Ж. М., Родзевич А. П. Комплексная утилизация отходов черной металлургии // Экология и безопасность в техносфере: современные проблемы и пути решения: сб. тр. Всерос. науч.-практ. конф. молодых ученых, аспирантов и студентов. 2017. С. 116 – 119.
3. Pei D., Li Y., Hua S., et al. In situ XRD study on function mechanism of pyroxene and anorthite in Si–Ca ceramics from ferronickel slag // Materials Letters. 2021. V. 305, No. 130839.
4. Wu Q., Huang Z. Preparation and performance of lightweight porous ceramics using metallurgical steel slag // Ceramics International. 2021. V. 47, No. 18. P. 25169 – 25176.
5. Shi Y., Song X., Han X., et al. Influences of additives on crystal multiformity and composition in a CaO–Al2O3–MgO–SiO2–based glass-ceramics // Advanced Composites and Hybrid Materials. 2021. V. 4, No. 3. P. 614 – 628.
6. Столбоушкин А. Ю., Верещагин В. И., Фомина О. А. Фазовый состав переходного слоя ядро–оболочка строительной керамики матричной структуры из непластичного сырья с добавками глины // Стекло и керамика. 2019. № 1. С. 19 – 25. [Stolboushkin A. Yu., Vereshchagin V. I., Fomina O. A. Phase Composition of the Core–Shell Transition Layer in a Construction Ceramic Matrix Structure Made from Non-Plastic Raw Material with Clay Additives // Glass Ceram. 2019. V. 76, No. 1–2. P. 16 – 21.]
7. Красный Б. Л., Иконников К. И., Лемешев Д. О., Сизова А. С. Летучая зола как техногенное сырье для получения огнеупорных и изоляционных керамических материалов // Стекло и керамика. 2021. № 2. С. 9 – 19. [Krasnyi B. L., Ikonnikov K. I., Lemeshev D. O., et al. Fly Ash as Technogenic Raw Material for Producing Refractory and Insulating Ceramic Materials: Review // Glass Ceram. 2021. V. 78, No. 1–2. P. 48 – 56.]
8. Xu X., Song J., Li Y., et al. The microstructure and properties of ceramic tiles from solid wastes of Bayer red muds // Construction and Building Materials. 2019. No. 212. P. 266 – 274.
9. Кайракбаев А. К., Абдрахимова Е. С., Абдра-химов В. З. Влияние различных отходов углеобогаще-ния на физико-механические показатели и фазовый состав теплоизоляционных материалов // Стекло и керамика. 2017. № 2. С. 23 – 28. [Kairakbaev A. K., Abdrakhimova E. S., Abdrakhimov V. Z. Effect of Different Coal-Enrichment Wastes on the Physical and Mechanical Properties and Phase Composition of Heat-Insulation Materials // Glass Ceram. 2017. V. 74, No. 1–2. P. 55 – 59.]
10. Yang J., Xiao B., Boccaccini A. R. Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash // Fuel. 2009. V. 88, No. 7. P. 1275 – 1280.
11. Liu M., Ma G., Zhang X., et al. Preparation of black ceramic tiles using waste copper slag and stainless steel slag of electric arc furnace // Materials. 2020. V. 13, No. 3. P. 776 – 787.
12. Galan-Arboledas R. J., Cotes T., Martinez C., et al. Influence of waste addition on the porosity of clay-based ceramic membranes // Desalination and water treatment. 2016. V. 57, No. 6. P. 2633 – 2639.
13. Liang B., Zhang M. X., Li H., et al. Preparation of ceramic foams from ceramic tile polishing waste and fly ash without added foaming agent // Ceramics inter-national. 2021. V. 47, No. 16. P. 23338 – 23349.
14. Teo P. T., Zakaria S. K., Sharif N. M., et al. Application of General Full Factorial Statistical Experi-mental Design's Approach for the Development of Sustain-able Clay-Based Ceramics Incorporated with Malaysia's Electric Arc Furnace Steel Slag Waste // Crystals. 2021. V. 11, No. 4. P. 442 – 467.
15. Chen H. C., Lin H. R., Zhang P. P., et al. Immobi-lisation of heavy metals in hazardous waste incineration residue using SiO2–Al2O3–Fe2O3–CaO glass-ceramic // Ceramics international. 2021. V. 47, No. 6. P. 8468 – 8477.
16. Zhang C. S., Wang X., Zhu H. J., et al. Preparation and properties of foam ceramic from nickel slag and waste glass powder // Ceramics international. 2020. V. 46, No. 15. P. 23623 – 23628.
17. Chen R. Y., Hei D. Q., Li S. J., et al. Environment-oriented low-cost Al2O3 ceramics with hierarchical pore structure fabricated from SiC solid waste // International journal of applied ceramic technology. 2020. V. 17, No. 1. P. 184 – 189.
18. Silva R. V., de Brito J., Lynn C. J., et al. Use of municipal solid waste incineration bottom ashes in alkali activated materials, ceramics and granular applications: A review // Waste management. 2017. V. 68. P. 207 – 220.
19. Li B. Q., Guo Y. P., Fang J. Z. Effect of MgO addition on crystallization, microstructure and properties of glass-ceramics prepared from solid wastes // Journal of alloys and compounds. 2021. V. 881. P. 159821.
20. Власов В. А., Скрипникова Н. К., Семеновых М. А. и др. Стеновые керамические материалы с использованием техногенного железосодержащего сырья // Строительные материалы. 2020. № 8. С. 33 – 37.
21. Karamanov A., Kamusheva A., Karashanova D., et al. Structure of glass-ceramic from Fe–Ni wastes // Materials Letters. 2018. No. 23. P. 86 – 89.

The article can be purchased
electronic!

PDF format

500 руб

DOI: 10.14489/glc.2022.03.pp.019-025
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Semenovykh M. A., Skripnikova N. K., Volokitin O. G., Shekhovtsov V. V. The use of technogenic metallurgical raw materials for the production of ceramic materials with an anorthite phase. Steklo i keramika. 2022:95(3):19-25. (in Russ). DOI: 10.14489/glc.2022.03.pp.019-025