Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1133
  • Pages: 3-9
  • Share:

Heading: Not-set

The influence of the spheroidization process in the flow of high-temperature plasma of glass based on the Li2O–Al2O3–SiO2 (LAS) system doped with 1.0 mol. % Nd2O3 on its crystallization properties is investigated. The resulting microspheres with a size of 32 – 64 ?m are characterized by a significantly higher glass transition temperature Tg compared to the Tg of the initial glass (751 °C and 677 °C, respectively), which may be due to both a change in chemical composition during spheroidization and a fundamentally different thermal history of microspheres and glass. Despite the delayed crystallization kinetics, the glass-ceramic structure based on ?-eucryptite-like solid solutions of LixAlxSi1 – xO2 is formed in microspheres, as in the initial glass, under the action of heat treatment, indicating the possibility of both obtaining microspheres with the glass-ceramic structure and varying their coefficient of thermal expansion near zero values.
Vladimir N. Sigaev – DSc. in Chemistry, Professor, Head of the International Center of Laser Technologies, Head of the P.D. Sarkisov International Laboratory of Functional Glass-based Materials, Head of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Andrey S. Naumov – Ph.D. Student of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Vitaliy I. Savinkov – Ph.D. in Technology, Assistant of the of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Alexey S. Lipatiev – Ph.D. in Chemistry, Assistant of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Sergey V. Lotarev – Ph.D. in Chemistry, Associate Professor of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Natalia N. Klimenko – Ph.D. in Technology, assistant professor of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Elena V. Lopatina – Ph.D. in Technology, Assistant of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
1. Bortot M. B., Prastalo S., Prado M. Production and characterization of glass microspheres for hepatic cancer treatment // Procedia Materials Science. 2012. V. 1. P. 351 – 358.
2. Атрощенко Г. Н., Сигаев В. Н. Стеклообразные микрошарики и их применение в ядерной медицине (обзор) // Стекло и керамика. 2015. № 11. С. 3 – 12. [Atroshchenko G. N., Sigaev V. N. Glassy microspheres and their applications in nuclear medicine (review) // Glass Ceram. 2016. V. 72, No. 11-12. P. 397 – 404.]
3. McMillan P. W. Glass-Ceramics. N. Y.: Academic Press, 1979.
4. Павлушкин Н. М. Основы технологии ситаллов. М.: Стройиздат, 1979.
5. Masuno A., Inoue H. High refractive index of 0.30 La2O3–0.70 Nb2O5 glass prepared by containerless processing // Appl. Phys. Express. 2010. V. 3, No. 10. P. 102601.
6. Kriewall C. S., Newkirk J. W. Plasma Spheroidization of Vitreloy 106A Bulk Metallic Glass Powder // Metall. Mater. Trans. A. 2019. V. 50, No. 10. P. 4791 – 4797.
7. Cai Q., Xie J., Xu K., et al. Spheroidization of borosilicate glass powder by RF induction coupled plasma // Ceram. Int. 2021. V. 47. P. 22578 – 22586.
8. Seo J. H., Kim D. U., Nam J. S., et al. Radio frequency thermal plasma treatment for size reduction and spheroidization of glass powders used in ceramic electronic devices // J. Am. Ceram. Soc. 2007. V. 90, No. 6. P. 1717 – 1722.
9. Lago D. C., Prado M. O. Dehydroxilation and crystallization of glasses: A DTA study // J. Non Cryst. Solids. 2013. V. 381. P. 12 – 16.
10. Hartmann P., Jedamzik R., Carre A., et al. Glass ceramic ZERODUR®: Even closer to zero thermal expansion: a review, part 1 // J. Astron. Telesc. Instrum. Syst. 2021. V. 7. No. 2. P. 020901.
11. Lipatiev A. S., Fedotov S. S., Lotarev S. V., et al. Direct laser writing of depressed-cladding waveguides in extremely low expansion lithium aluminosilicate glass-ceramics // Opt. Laser Technol. 2021. V. 138. P. 106846.
12. Guan J. Femtosecond-laser-written integrated photonics in bulk glass-ceramics Zerodur // Ceram. Int. 2021. V. 47, No. 7. P. 10189 – 10192.
13. Lahoz F., Martin I. R., Rodriguez-Mendoza U. R., et al. Rare earths in nanocrystalline glass–ceramics // Opt. Mater. 2005. V. 27. No. 11. P. 1762–1770.
14. Савинков В. И., Наумов А. С., Лотарев С. В. и др. Прозрачный термостабильный литиевоалюмо-силикатный ситалл, допированный оксидом неодима // Стекло и керамика. 2020. № 11. С. 19 – 23. [Savinkov V. I., Naumov A. S., Lotarev S. V., et al. Thermostable transparent lithium-aluminosilicate sitall doped with neodymium oxide // Glass Ceram. 2021. V. 77, No. 11-12. P. 422 – 425.]
15. Walo-Mart?n D., Paz-Buclatin F., Rios S., et al. Temperature sensing with Nd3+ doped YAS laser micro-resonators // Appl. Sci. 2021. V. 11, No. 3. P. 1117.
16. de Sousa-Vieira L., R?os S., Mart?n I. R., et al. Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window // Opt. Mater. 2018. V. 83. P. 207 – 211.
17. Пат. РФ 2 756 886. С1 МПК. С03С 3/068. Люминесцирующий стеклокристаллический материал / В. Н. Сигаев, А. С. Наумов, В. И. Савинков и др. Опубл. 06.10.2021.
18. Ho?che T., Patzig C. Temporal evolution of diffusion barriers surrounding ZrTiO4 nuclei in lithia alumino-silicate glass-ceramics // Cryst. Growth Des. 2012. V. 12, No. 3. P. 1556 – 1563.
19. Roy R., Roy D. M., Osborn E. F. Compositional and stability relationships among the lithium aluminosilicates: eucryptite, spodumene, and petalite // J. Am. Ceram. Soc. 1950. V. 33, No. 5. P. 152 – 159.
20. Zhang M., Xu H., Salje E. K. H., et al. Vibrational spectroscopy of betaeucryptite (LiAlSiO4): optical phonons and phase transition (s) // Phys. Chem. Miner. 2003. V. 30. P. 457 – 462.

The article can be purchased
electronic!

PDF format

500 руб

DOI: 10.14489/glc.2022.05.pp.003-009
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Sigaev V. N., Naumov A. S., Savinkov V. I., Lipatiev A. S., Lotarev S. V., Klimenko N. N., Lopatina E. V. Features of crystallization of lithium-aluminosilicate glass microspheres obtained in a high-temperature plasma flow. Steklo i keramika. 2022:95(5):03-09. (in Russ). DOI: 10.14489/glc.2022.05.pp.003-009