Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1133
  • Pages: 22-30
  • Share:

Heading: Not-set

The effect of the addition of magnetite in the form of pyrite stubs on the physico-mechanical and radio-absorbing properties of the synthesized glass composite by the method of “cold” foaming is considered. Replacing glass powder with magnetite in the initial liquid-glass composition reduces the foaming coefficient from 80 to 20 %, which is due to a decrease in the viscosity of the composition due to the particle size of the additive (160 ?m), their high density (5100 kg/m3) and porous structure. It has been established that the optimal content of magnetite for obtaining a material with radio-absorbing properties is no more than 10 %. A porous glass composite with an average pore size of 2, containing 10 % magnetite, has an absorption coefficient of electromagnetic radiation in the high-frequency range (120 – 250 GHz) on average 10 % more than a composite without an additive.
Kirill V. Skirdin – postgraduate student, Tomsk Polytechnic University, N. M. Kizhner research center, Engineering School of New Production Technologies (ISNPT), Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Kirill V. Dorozhkin – junior researcher, Department of Radio Electronics, Scientific Laboratory of Terahertz Research, Tomsk State University (TSU), Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Olga V. Kazmina – doctor of technical sciences, professor of the N. M. Kizhner Research Center, Engineering School of New Production Technologies (ISNPT), Tomsk Polytechnic University, Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
1. Yong-Bao Feng; Tai Qiu; Chun-Ying Shen; Xiao-Yun Li. Electromagnetic and absorption properties of car-bonyl iron/rubber radar absorbing materials // IEEE Trans-actions on Magnetics. 2006. V. 42, No. 3. P. 363 – 368.
2. Seckin S., Niru N. K., Sertel K. Dielectric properties of low-loss polymers for mmW and THz applications // Journal of Infrared, Millimeter, and Terahertz Waves, 2019. V. 40. Р. 557 – 573.
3. Laur V., Benzerga R., Lebullenger R., et al. Green foams for microwave absorbing applications: Synthesis and characterization // Materials Research Bulletin. 2017. V. 96. P. 100 – 106.
4. Younes Lamri, Ratiba Benzerga, Azzedine Ayadi, et al. Synthesis and characterization of foam glass composites for electromagnetic absorption application // Materials Research Express. 2019. V. 6. P. 1 – 9.
5. Benzerga R., Laur V., Lebullenger R., et al. Waste-glass recycling: A step toward microwave applications // Materials Research Bulletin. 2015. V. 67. P. 261 – 265.
6. Jasinska I., Dachowski R., Jaworska-W?dzi?ska M. Thermal conductivity of sand-lime products modified with foam glass granulate // Materials. 2021. V. 14, No. 19. P. 5678. DOI: doi.org/10.3390/ma14195678.
7. Song H., Chai C., Zhao Z., et al. Experimental study of foam glass obtained by hydrothermal hot pressing-calcination using glass waste and fly ash // Ceramics International. 2021. P. 28603 – 28613.
8. Liu Y., Xie J., Hao P., et al. Study on Factors Affecting Properties of Foam Glass Made from Waste Glass // Journal of Renewable Materials. 2021. V. 9, Is. 2. P. 237 – 253.
9. Silva da R. C., Puglieri F. N., Genaro Chiroli de D. M. Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents // Science of The Total Environment. 2021. V. 771. P. 145276. DOI: doi.org/10.1016/ j.scitotenv.2021.145276.
10. Lesbayev A. B., Elouadi B., Lesbayev B. T., et al. Obtaining of magnetic polymeric fibers with additives of magnetite nanoparticle // Procedia Manufacturing. 2017. V. 12. P. 28 – 32.
11. Chenyu L., Dawei Y., Donald W. K., Yongjun X. Electromagnetic wave absorption of silicon carbide based materials // RSC Advances. 2017. No. 2. Р. 595 – 605.
12. Pi?eiro-Redondo Y., Ba?obre-L?pez M., Pardi?as-Blanco I., et al. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles // Nanoscale Research Letters. 2011. V. 6. P. 1 – 7.
13. Семенова В. И., Кутугин В. А., Казьмина О. В. Синтез и свойства пористого стеклокомпозита, модифицированного карбидом кремния // Стекло и керамика. 2020. Т. 93, № 4. С. 10 – 18. [Semenova V. I., Kutugin V. A., Kazmina O. V. Synthesis and Properties of Porous Glass Composite Modified by Silicon Carbide // Glass Ceram. 2021. V. 77, Is. 3-4. P. 127 – 134.]
14. Kuczmarski M., Johnston J. C. Acoustic absorption in porous materials / Glenn Research Center. Cleveland, 2011. 27 p.

The article can be purchased
electronic!

PDF format

500 руб

DOI: 10.14489/glc.2022.05.pp.022-030
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Skirdin K. V., Dorozhkin K. V., Kazmina O. V. The influence of magnetite on the radio-absorbing properties of porous glass composite in the high-frequency region. Steklo i keramika. 2022:95(5):22-30. (in Russ). DOI: 10.14489/glc.2022.05.pp.022-030