Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1133
  • Pages: 31-37
  • Share:

Heading: Not-set

The aim of this paper is exploring an opportunity to improve the thermoelectric properties of the cermet Bi2Te3 + 0.5 at. % Gd composite. It was found that under spark plasma sintering, a composite microstructure consisting of the Ni inclusions, which are randomly distributed inside the grained Bi2Te3 matrix, is really formed. With introducing Ni inclusions in Bi2Te3, the specific electrical resistivity increases, and the total thermal conductivity decreases. The highest thermoelectric figure-of-merit for the composite (~ 0.63) happened to be slightly enhanced as compared to that for the matrix material (~ 0.58).
Oleg N. Ivanov – doctor of physics and mathematics, scientific leader of laboratory of prospect materials for ALTERNATIVE energy, Belgorod State Technological University named after V. G. Shukhov (BGTU named after V. C. Shukhov), Belgorod, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Maxim N. Yaprintsev – candidate of physics and mathematics, CO-WORKER of CCU “Technologies OF MATERIALS”, Belgorod State National University, BelSU, Belgorod, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Alexei E. Vasil’ev – candidate of physics and mathematics, junior scientific co-worker of laboratory of PROSPECT MATERIALS for alternative energy, BELGOROD STATE TECHNOLOGICAL University named after V. G. Shukhov (BGTU named after V. C. Shukhov), Belgorod, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Marina V. Zhezhu – post-graduate student, Belgorod State National University (BelSU), Belgorod, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Vladimir V. Khovaylo – doctor of physic and mathematics, leading scientific co-worker, National University of Science and Technology MISIS (NUST MISIS), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
1. Курганова Ю. А., Колмаков А. Г. Конструкци-онные металломатричные композиционные материалы. М.: Изд-во МГТУ им. Н. Э. Баумана, 2015. 141 c.
2. Mukbaniani O. V., Balkose D., Susanto H., Haghi A. K. Composite materials for industry, electronics, and the environment: research and applications. Apple Academic Press, 2020. 414 p.
3. Chen A. X., Yang C., Wang R. H., et al. Effect of raw materials on properties of coated Al2O3–Al cermet materials via vacuum sintering method // Key Engin. Mater. 2020. V. 858. P. 53 – 58.
4. Zhao W., Liu Z., Wei P., et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials // Nat. Nanotechnol. 2017. V. 12. P. 55 – 60.
5. Zhao W., Liu Z., Sun Z., et al. Superparamagnetic enhancement of thermoelectric performance // Nature. 2017. V. 13. P. 247 – 251.
6. Lu R., Lopez J. S., Liu Y., et al. Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high Tc ferromagnetism and enhanced thermoelectric performance // J. Mater. Chem. A. 2019. V. 7. P. 1095 – 11103.
7. Yaprintsev M., Vasil’ev A., Ivanov O. et al. Enhanced thermoelectric efficiency of the bulk composites consisting of “Bi2Te3 matrix” and “filler Ni@NiTe2 inclusions” // Sci. Mater. 2021. V. 194. P. 113710 – 113713.
8. Yaprintsev M., Vasil’ev A., Ivanov O., et al. Forming the locally-gradient Ni@NiTe2 domains from initial Ni inclusions embedded into thermoelectric Bi2Te3 matrix // Mater. Lett. 2021. V. 290. P. 129451 – 129454.
9. Иванов О. Н., Япрынцев М. Н., Васильев А. Е., и др. Особенности микроструктуры металлокерамического композита на основе матрицы из термоэлектрического теллурида висмута и ферромагнитного наполнителя // Стекло и керамика. 2021. № 11. С. 23 – 29. [Ivanov O. N., Yapryntsev M. N., Vasil’ev A. E., et al. Microstructure Features of Metal-Matrix Composites Based on Thermoelectric Bismuth Telluride Matrix and Ferromagnetic Filler // Glass Ceram. 2021. V. 78, No. 11-12. P. 442 – 447.]
10. Goldsmid H. J. Bismuth telluride and its alloys as materials for thermoelectric generation // Mater. 2014. V. 7. P. 2577 – 2592.
11. Yang J., Wu F., Zhu Z., et al. Thermoelectrical properties of lutetium-doped Bi2Te3 bulk samples prepared from flower-like nanopowders // J. Alloys Compd. 2015. V. 619. P. 401 – 405.
12. Ji X. H., Zhao X. B., Zhang Y. H., et al. Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys // J. Alloys Compd. 2000. V. 387. P. 282 – 286.
13. Wu F., Song H., Jia J., Hu X. Effects of Ce, Y, and Sm doping on the thermoelectric properties of Bi2Te3 alloy // Prog. Nat. Sci. Mater. Int. 2013. V. 2. P. 408 – 412.
14. Wu F., Shi W., Hu X. Preparation and thermoelectric properties of flower-like nanoparticles of Ce-Doped Bi2Te3 // Electron. Mater. Lett. 2015. V. 11. P. 127 – 132.
15. Goldsmid H. J., Sharp J. W. Estimation of the thermal band gap of a semiconductor from Seebeck measurements // J. Electron. Mater. 1999. V. 28. P. 869 – 872.

The article can be purchased
electronic!

PDF format

500 руб

DOI: 10.14489/glc.2022.05.pp.031-037
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Ivanov O. N., Yaprintsev M. N., Vasil’ev A. E., Zhezhu M. V., Khovaylo V. V. Thermoelectric properties of cermet Bi2Te3–Gd composite. Steklo i keramika. 2022:95(5):31-37. (in Russ). DOI: 10.14489/glc.2022.05.pp.031-037