Wollastonite ceramics was obtained from chalk and diatomite by the method of solid-phase synthesis of components.
The influence of charge composition, modes of its mechanochemical activation and temperature-time modes of heat treatment on the phase composition, physical-mechanical and thermophysical properties of ceramic materials is studied.
As a result of the joint mechanochemical activation of the charge components (chalk + diatomite), the temperature of the solid-phase synthesis of wollastonite ceramics was reduced to 900 °C. After firing for 2 hours, ceramic samples were obtained almost 90 % consisting of the mineral wollastonite. The compressive strength of the samples is 22 – 23 MPa at an average density of 1270 – 1300 kg/m3. The material has a stable thermal coefficient of linear expansion (TCLE) under 7.76?10–6 K–1. It can be operated at temperatures up to 1100 °C inclusively. Thermal insulation samples with an average density of 435 kg/m3, compressive strength of 2.2 MPa, thermal conductivity of 0.099 W/(m °C) and the limiting operating temperature under 1050 °C were obtained from the prepared charge mixture and foamed perlite. The resulting materials can be used as thermal insulation for industrial and civil facilities, refractory insulation of industrial furnaces, equipment, etc.
Aleksander I. Rodin – candidate of technical sciences, docent, associate professor of the department of building materials and technologies, NATIONAL RESEARCH Mordovia State University, Saransk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Anatoly A. Ermakov – postgraduate student of the department of building materials and technologies, National Research Mordovia State University, Saransk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Vladimir M. Kyashkin – candidate of physical and mathematical sciences, docent, associate professor of the department of solid state physics, National Research Mordovia State University, Saransk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Natalia G. Rodina – junior research associate of the department of building materials and technologies, National Research Mordovia State University, Saransk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Vladimir T. Erofeev – doctor of technical sciences, professor, head of the department of building materials and technologies, National Research Mordovia State University, Saransk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
1. Salmon D. Thermal conductivity of insulations using guarded hot plates including recent developments and sources of reference materials // Measurement Science and Technology. 2001. V. 12, No. 12. P. R89–R98. DOI: 10.1088/0957-0233/12/12/201.
2. Da Silva V. J., Taveira S. K. A., Silva K. R., et al. Refractory ceramics of clay and alumina waste // Materials Research. 2021. V. 24, No. 2. DOI: 10.1590/1980-5373-MR-2020-0485.
3. Vakalova T. V., Pogrebenkov V. M., Karionova N. P. Solid-phase synthesis of wollastonite in natural and technogenic siliceous stock mixtures with varying levels of calcium carbonate component // Ceramics International. 2016. V. 42, No. 15. P. 16453 – 16462. DOI: 10.1016/ j.ceramint.2016.06.060.
4. Schneider H., Fischer R. X., Schreuer J. Mullite: Crystal Structure and Related Properties // Journal of the American Ceramic Society. 2015. V. 98, No. 10. P. 2948 – 2967. DOI: 10.1111/jace.13817.
5. Kashcheev I. D., Sychev S. N., Zemlyanoi K. G., et al. Diatomic heat insulation materials with increased application temperature // Refractories and Industrial Ceramics. 2009. V. 50, No. 5. P. 354 – 358. DOI: 10.1007/ s11148-010-9213-9.
6. Erofeev V. T., Rodin A. I., Bochkin V. S., Ermakov A. A. Properties of porous glass ceramics based on siliceous rocks // Magazine of Civil Engineering. 2021. V. 102, No. 2. P. 10202. DOI: 10.34910/MCE.102.2.
7. Kruszewski ?., Palchik V., Vapnik Y., et al. Mineralogical, geochemical, and rock mechanic characteristics of zeolite?bearing rocks of the hatrurim basin, Israel // Minerals. 2021. V. 11, No. 10. P. 1062. DOI: 10.3390/min11101062.
8. Jiang F., Zhang L., Jiang Z., et al. Diatomite-based porous ceramics with high apparent porosity: Pore structure modification using calcium carbonate // Ceramics International. 2019. V. 45, No. 5. P. 6085 – 6092. DOI: 10.1016/j.ceramint.2018.12.082.
9. Novembre D., Pace C., Gimeno D. Synthesis and characterization of wollastonite-2M by using a diatomite precursor // Mineralogical Magazine. 2018. V. 82, No. 1. P. 95 – 110. DOI: 10.1180/minmag.2017.081.025.
10. Ribas R. G., Campos T. M. B., Schatkoski V. M., et al. ?-wollastonite crystallization at low temperature // Ceramics International. 2020. V. 46, No. 5. P. 6575 – 6580. DOI: 10.1016/j.ceramint.2019.11.143.
11. Najafinezhad A., Abdellahi M., Ghayour H., et al. A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics // Materials Science and Engineering. C. 2017. V. 72. P. 259 – 267. DOI: 10.1016/j.msec.2016.11.084.
12. Xie J., Yang X., Shao H., et al. Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping // Journal of the Mechanical Behavior of Biomedical Materials. 2016. V. 54. P. 60 – 71. DOI: 10.1016/j.jmbbm.2015.09.012.
13. Palakurthy S., Venugopal Reddy K., Samudrala R. K., Abdul Azeem P. In vitro bioactivity and degradation behaviour of ?-wollastonite derived from natural waste // Materials Science and Engineering. C. 2019. V. 98. P. 109 – 117. DOI: 10.1016/j.msec.2018.12.101.
14. Tangboriboon N., Khongnakhon T., Kittikul S., et al. An innovative CaSiO3 dielectric material from eggshells by sol-gel process // Journal of Sol-Gel Science and Technology. 2011. V. 58, No. 1. P. 33 – 41. DOI: 10.1007/s10971-010-2351-1.
15. Gineika A., Baltakys K., Dambrauskas T. The application of silica gel waste for the two-step synthesis of wollastonite in temperature range of 200 – 950 °C // Journal of Thermal Analysis and Calorimetry. 2019. V. 138, No. 3. P. 2263 – 2273. DOI: 10.1007/s10973-019-08481-5.
16. Puntharod R., Sankram C., Chantaramee N., et al. Synthesis and characterization of wollastonite from egg shell and diatomite by the hydrothermal method // Journal of Ceramic Processing Research. 2013. V. 14, No. 2. P. 198 – 201.
17. Abd Rashid R., Shamsudin R., Abdul Hamid M. A., Jalar A. Low temperature production of wollastonite from limestone and silica sand through solid-state reaction // Journal of Asian Ceramic Societies. 2014. V. 2, No. 1. P. 77 – 81. DOI: 10.1016/j.jascer.2014.01.010.
18. Chantaramee N., Kaewpoomee P., Puntharod R. Utilization of expanded perlite as a source of silica for synthesizing wollastonite by solid state reaction // Key Engineering Materials. 2016. V. 690. P. 143 – 149. DOI: 10.4028/www.scientific.net/KEM.690.143.
19. Erofeev V., Rodin A., Bochkin V., Ermakov A. The formation mechanism of the porous structure of glass ceramics from siliceous rock // Magazine of Civil Engineering. 2020. V. 100, No. 8. A6. DOI: 10.18720/ MCE.100.6.
20. Sadeghzade S., Emadi R., Labbaf S. Formation mechanism of nano-hardystonite powder prepared by mechanochemical synthesis // Advanced Powder Technology. 2016. V. 27, No. 5. P. 2238 – 2244. DOI: 10.1016/j.apt.2016.08.010.
21. Shirazi F. S., Mehrali M., Nasiri-Tabrizi B., et al. Mechanochemical synthesis and characterization of silver (AG+) and tantalum (TA5+) doped calcium silicate nanopowders // Science of Advanced Materials. 2015. V. 7, No. 12. P. 2664 – 2671. DOI: 10.1166/sam.2015.2403.
22. Obradovi? N., Filipovi? S., Rusmirovi? J., et al. Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent // Science of Sintering. 2017. V. 49, No. 3. P. 235 – 246. DOI: 10.2298/SOS1703235O.
23. Bouatrous M., Bouzerara F., Bhakta A. K., et al. A modified wet chemical synthesis of Wollastonite ceramic nanopowders and their characterizations // Ceramics International. 2020. V. 46, No. 8. P. 12618 – 12625. DOI: 10.1016/j.ceramint.2020.02.026.
24. Hafezi M., Nadernezhad A., Mohammadi M., et al. Effect of ball milling time on the synthesis of Nanocrystalline merwinite via mechanical activation and heat treatment // International Journal of Materials Research. 2014. V. 105, No. 5. P. 469 – 473. DOI: 10.3139/ 146.111048.
25. Elsayed H., Colombo P. Crack-free silicate bioceramics from preceramic polymers // Advances in Applied Ceramics. 2016. V. 115, No. 4. P. 193 – 199. DOI: 10.1080/17436753.2015.1116663.
26. Elsayed H., Romero A. R., Picicco M., et al. Glass-ceramic foams and reticulated scaffolds by sinter-crystallization of a hardystonite glass // Journal of Non-Crystalline Solids. 2020. V. 528. P. 119744. DOI: 10.1016/ j.jnoncrysol.2019.119744.
27. Najafinezhad A., Abdellahi M., Nasiri-Harchegani S., et al. On the synthesis of nanostructured akermanite scaffolds via space holder method: The effect of the spacer size on the porosity and mechanical properties // Journal of the Mechanical Behavior of Biomedical Materials. 2017. V. 69. P. 242 – 248. DOI: 10.1016/j.jmbbm.2017.01.002.
The article can be purchased
electronic!
PDF format
700 руб
DOI: 10.14489/glc.2022.07.pp.029-042
Article type:
Research Article
Make a request