Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1136
  • Pages: 43-51
  • Share:

Heading: Not-set

The solid solution Ce0.8Y0.2O2-? was obtained by three methods: sol gel, glycine nitrate and solid-state reaction. The synthesis temperature was 1350 ?C for the sample obtained by the sol gel method and 1500 ?C for the remaining samples. It’s shown by the X-Ray method that all samples have a cubic lattice with a fluorite structure. The microstructure, density, electrical conductivity, microhardness and crack resistance of the synthesized ceramics were investigated. By the impedance spectroscopy method, a system Ce0.8Y0.2O2-? obtained by the sol gel method was found to have the highest electrical conductivity reaching 5.37 mS/cm at a temperature of 550 ?С and the lowest activation energy equal to 0.83 eV in the temperature range of 300 – 550 ?C. The contribution to the conductivity of the grains and the grain boundaries is defined. A common conductivity is shown to be decreased because of the resistance of the grain boundaries for all samples.

Irina Vasailevna Sudzhanskaya – PhD of Physics and Mathematics, scientific worker of the Joint Research Center of Belgorod State National Research University “Technology and Materials” Belgorod National Research University, Belgorod, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Alexei E. Vasil’ev – PhD of Physics and Mathematics, scientific worker of laboratory of prospect materials for alternative energy, Belgorod State Technological University named after V. G. Shukhov (BGTU), Belgorod, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Maxim N. Yaprintsev – PhD of Physics and Mathematics, scientific worker of Joint Research Centre “Technologies and Materials of BSU”, Belgorod State University (BSU), Belgorod, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Yulia Sergeevna Nekrasova – PhD of Physics and Mathematics, Associate Professor of the Department of Mathematics BSTU named after V. G. Shukhova, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Andrei Nikolaevich Oleinik – PhD of Physics and Mathematics, scientific worker of the Laboratory of Radiation Physics, Belgorod National Research University, Belgorod, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..

1. Fan L., Wang C., Chen M., Zhu B. Recent development of ceria-based (nano) composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells // Journal of Power Sources. 2013. V. 234. P. 154 – 174.
2. Lingyao Li, Bin Zhu, Jing Zhang, et al. Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells // International Journal of Hydrogen Energy. 2018. V. 43. P. 12909 – 12916.
3. Gao Zh., Mogni L. V., Miller E. C., et al. A perspective on low-temperature solid oxide fuel cells // Energy & Environmental Science 2016. V. 9, Is. 5. P. 1602 – 1644.
4. Zhang J., Lenser Ch., Menzler N. H., Guillon O. Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500 ?C // Solid State Ionics. 2020. V. 344. P. 115138.
5. Liu Z., Ding D., Liu M., et al. High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures // Journal of Power Sources. 2013. V. 241. P. 454 – 459. DOI: 10.1016 / j.jpowsour.2013.04.130
6. Steele B. C. H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 ?C // Solid State Ionics. 2000. V. 129. P. 95 – 110.
7. Doshi R., Richards V. L., Carter. D. J., et al. Development of Solid-Oxide Fuel Cells That Operate at 500 ?C // Journal of The Electrochemical Society. 1999. V. 146, No. 4. P. 1273 – 1278.
8. Tadoroko S. K., Porfirio T. C., Muccillo R., Muccillo E. N. S. Synthesis, sintering and impedance spectroscopy of 8 mol % yttria-doped ceria solid electrolyte // Journal of Power Sources. 2004. V. 130. P. 15 – 21.
9. Shi Q., Chen J., Xing Yu., et al. Semiconductor Heterostructure StTiO3/CeO2 Electrolyte Membrate Fuel Cells // Journal of the Electrochemical Society. 2020. V. 167. P. 054504.
10. Brosha E. L., Mukundan R., Brown D. R., et al. Development of ceramic mixed potential sensors for auto-motive applications // Solid State Ionics. 2002. V. 148. P. 61 – 69.
11. Nigge U., Wiemhofer H. D., Romer E. W. J., et al. Composites of Ce0.8Gd0.2O1.9 and Gd0.7Ca0.3CoO3 das oxygen permeable membranes for exhaust gas sensor // Solid State Ionics. 2002. V. 146, No. 1–2. P. 163.
12. Hashimoto A., Hibino T., Sano M. A Fuel-Cell-Type Sensor for Detection of Carbon Monoxide in Reformed Gases // Electrochem. Solid-State Lett. 2002. V. 5, No. 2.
13. Melchionna M., Fornasiero P. The role of ceria-based nanostructured materials in energy applications // Materials Today. 2014. V. 17, No. 7. P. 349 – 357.
14. He D., Hao H., Chen D., et al. Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition // Catalysis Today. 2017. V. 281, No. 3. P. 559 – 565.
15. Vita A. Catalytic Applications of CeO2-Based Materials // Catalysts. 2020. V. 10. P. 576. URL: https:// doi.org/10.3390/catal10050576
16. Nikbin D. Micro SOFCs: why small is beautiful // The Fuel Cell Review. 2006. No. 3. P. 21 – 24.
17. Bieberle-Hutter A., Beckel D., Muecke U., et al. Micro-solid oxide fuel cells as battery replacement // Mst News. 2005. No. 4-5. P. 12 – 15.
18. Bieberle-Hutter A., Beckel D., Infortuna A., et al. A micro-solid oxide fuel cell system as battery replacement // Journal of Power Sources. 2008. V. 177. P. 123 – 130. DOI:10.1016/j.jpowsour.2007.10.092.
19. Robert G. Micro Fuel Cells for Portable Applica-tions: European Patent EP 1455409A1, 2004.
20. Xu H., Yan H., Chen Z. Sintering and electrical properties of Ce0.8Y0.2O1.9 powders prepared by citric acid-nitrate low-temperature combustion process // Journal of Power Sources. 2006. V. 163. P. 409 – 414.
21. Padmasree K. P., Montalvo-Lozano R. A., Montemayor S. M., Fuentes A. F. Electrical conduction and dielectric relaxation process in Ce0.8Y0.2O1.9 electrolyte system // Journal of Alloys and Compounds. 2011. V. 509. P. 8584 – 8589.
22. Wang B., Zhu B., Yun S., et al. Fast ionic conduc-tion in semiconductor CeO2-? electrolyte fuel cells // NPG Asia Materials. 2019. V. 11. P. 51.
23. Inaba H., Tagawa H. Ceria-based solid electro-lytes // Solid State Ionics. 1996. V. 83. P. 1 – 16.
24. Horovistiz A. L., Rocha R. A., Muccillo E. N. S. Electrical conductivity and microstructure relationship in ternary systems based on cerium oxide // Ceramics International. 2013. V. 39. P. 5887 – 5892.
25. Ramos-Alvarez P., Villafuerte-Castrejon M. E., Gonzalez G., et al. Ceria-based electrolytes with high surface area and improved conductivity for intermediate temperature solid oxide fuel cells // J. Mater. Sci. 2017. V. 52. P. 519 – 532.
26. Yoshida H., Miura K., Fukui T., et al. Sintering behavior of Ln-doped ceria compounds containing gallia // Journal of Power Sources. 2002. V. 106. P. 136 – 141. URL: https://doi.org/10.1016/S0378-7753(01)01038-2
27. Ma J., Zhang T. S., Kong L. B., et al. Preparation and characterization of dense Ce0.85Y0.15O2-? ceramics // Journal of the European Ceramic Society. 2004. V. 24. P. 2641 – 2648.
28. Gerhardt R., Nowick A. S. Grain-Boundary Effect in Ceria Doped with Trivalent Cations: I. Electrical Measurements // Journal of the American Ceramic Society. 1986. V. 69, No. 9. P. 641 – 646.
29. Mahmud L. S., Muchtar A., Somalu M. R. Challenges in fabricating planar solid oxide fuel cells: a review // Renewable and Sustainable Energy Reviews. 2017. V. 72. P. 105 – 116. URL: https://doi.org/10.1016/j.rser.2017.01.019
30. Prasad D. H., Son J.-W., Kim B.-K., et al. Synthesis of nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol-gel thermolysis process for IT-SOFCs // Journal of the European Ceramic Society. 2008. V. 28, I, No. 16. P. 3107 – 3112. URL: https://doi.org/10.1016/j.jeurceramsoc. 2008.05.021
31. Tian C., Chan S.-W. Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3 // Solid State Ionics. 2000. V. 134. P. 89 – 102. URL: https://doi.org/10.1016/S0167-2738(00)00717-7
32. Fu Y.-P. Ionic conductivity and mechanical properties of Y2O3-doped CeO2 ceramics synthesis by microwave-induced combustion // Ceramics International. 2009. V. 35. P. 653 – 659.
33. Li J. G., Wang Y., Ikegami T., Ishigaki T. Densification below 1000 ?C and grain growth behaviors of yttria doped ceria ceramics // Solid State Ionics. 2008. V. 179. P. 951 – 954. URL: https://doi.org/10.1016/ j.ssi.2008.01.053
34. Guo C. X., Wang J. X., He C. R., Wang W. G. Effect of alumina on the properties of ceria and Scandia co-doped zirconia for electrolyte-supported SOFC. // Ceramics International. 2013. V. 39. P. 9575 – 9582. URL: http://dx.doi.org/10.1016/j.ceramint.2013.05.076
35. Kidner N. J., Perry N. H., Mason T. O. The Brick Model Revisited: Introducing the Nanj-Grain Composite Model // J. Am. Ceram. Soc. 2008. V. 91. No. 6. P. 1733 – 1746. URL: https://doi.org/10.1111/j.1551-2916.2008.02445.x
36. Foschii C. R., Souza D. P. F., Filho P. I. P., Varela J. A. AC impedance study of Ni, Fe, Cu, Mn doped ceria stabilized zirconia ceramics // Journal of the European Ceramic Society. 2001. V. 21, I, No. 9. P. 1143 – 1150. URL: https://doi.org/10.1016/S0955-2219(00)00339-3
37. Neuhaus K., Dolle R., Wiemhofer H.-D. The Effect of Transition Metal Oxide Addition on the Conductivity of Commercially Available Gd-Doped Ceria // Journal of The Electrochemical Society. 2020. V. 167. P. 044507. URL: https://iopscience.iop.org/ article/10.1149/1945-7111/ab729b/pdf
38. Niihara K., Morena R., Hasselman D. P. H. Evalution of K1c of brittle solids by the indentation method with low crack-to-indent rations // Mater. Sci. Lett. 1982. No. 1. P. 13 – 16.

The article can be purchased
electronic!

PDF format

500

DOI: 10.14489/glc.2022.08.pp.043-051
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Sudzhanskaya I. V., Vasilev A. E., Yaprintsev M. N., Nekrasova Yu. S., Oleinik A. N. The manufacturing method effect on the structure and electrical properties of solid solution Ce0.8Y0.2О2-?. Steklo i keramika. 2022:95(8):43-51. (in Russ). DOI: 10.14489/glc.2022.08.pp.043-051