New glassy materials have been obtained in the ZnO–B2O3:CоO system. The physicochemical and spectral properties of zinc-borate glasses doped with cobalt have been studied in the composition range from 45 to 70 mas. % ZnO.
The influence of the glass matrix on the coordination state of Co2+ ions is shown. Intense absorption bands in the visible region are attributed to the 4A2(F) ? 2A1(G), 4A2(F) ? 4T1(P) and 4A2(F) ? 2E(2G) transitions. The presence of an absorption band in the near-IR region (1.3 – 1.7 µm) due to the electronic transition 4A2(4F) ? 4T1(4F) of cobalt in the tetracoordinated state has been established.
Igor M. Krol – Leading Engineer of the Department of General Technology of Silicates, D. Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Irina G. Sergun – student of the Faculty of Natural Sciences, D. Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Marina P. Zykova – Ph.D., Researcher at the Laboratory of Functional Materials and Structures for Photonics and Electronics, D. Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Nataliya N. Klimenko – Ph.D. of Engineering Sciences, Associate Professors at the Department of Chemical Technology of Glass and Glass-Ceramics, D. Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Kuchuk Zhanna Semyonovna – Ph.D., Associate Professor of the Department of General Chemistry, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Olga P. Barinova – Ph.D., Associate Professor of the Department of General Technology of Silicates, D. Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
1. Sigrist M. W. Laser: Theorie, Typen und Anwendungen. Berlin: Springer Spektrum, 2018.
2. Yumashev K. V. Saturable absorber Co2+: MgAl2O4 crystal for Q switching of 1.34-µm Nd3+: YAlO3 and 1.54-µm Er3+: glass lasers // Applied Оptics. 1999. V. 38, No. 30. P. 6343 – 6346.
3. Malyarevich A. M., Yumashev K. V. Saturable absorbers based on tetrahedrally coordinated transition-metal ions in crystals // Journal of Applied Spectroscopy. 2009. V. 76, No. 1. P. 1 – 43.
4. Batista E. A., Silva A. C. A., Rezende Th. K. de L., et al. Modulating the magnetic-optical properties of Zn1? xCoxO nanocrystals with x-content // Journal of Materials Research. 2021. V. 36. P. 1657 – 1665.
5. Volk Y. V., Malyarevich A. M., Yumashev K. V., et al. Stimulated emission of Co2+-doped glass-ceramics // Journal of Non-Crystalline Solids. 2007. V. 353, No. 24–25. P. 2408 – 2414.
6. Qi H., Hou X., Li Y., Sun Y., et al. Co2+: LaMgAl11O19 saturable absorber Q-switch for a 1.319 ?m Nd3+: YAG laser // Optics & Laser Technology. 2007. V. 39, No. 4. P. 724 – 727.
7. Yumashev K. V. Saturable absorber Co2+:MgAl2O4 crystal for Q switching of 1.34-µm Nd3+:YAlO3 and 1.54-µm Er3+: glass lasers // Applied Оptics. 1999. V. 38, No. 30. P. 6343 – 6346.
8. Loiko P., Skoptsov N. A., Malyarevich A. M., et al. Saturable absorber: transparent glass-ceramics based on a mixture of Co: ?-Zn2SiO4 and Co: ZnO nanocrystals // Applied Optics. 2016. V. 55, No. 21. P. 5505 – 5512.
9. Hunault M., Calas G., Galoisy L., et al. Local or-dering around tetrahedral Co2+ in silicate glasses // Journal of the American Ceramic Society. 2014. V. 97, No. 1. P. 60 – 62.
10. Thulasiramudu A., Buddhudu S. Optical charac-terization of Mn2+, Ni2+ and Co2+ ions doped zinc lead borate glasses // Journal of Quantitative Spectroscopy and Radiative Transfer. 2006. V. 102, No. 2. P. 212 – 227.
11. Nelson C., White W. B. Transition metal ions in silicate melts. IV. Cobalt in sodium silicate and related glasses // Journal of Materials Research. 1986. V. 1, No. 1. P. 130 – 138.
12. Lakshminarayana G., Buddhudu S. Spectral analysis of Mn2+, Co2+ and Ni2+: B2O3–ZnO–PbO glasses // Spectrochimica Acta. Pt A: Molecular and Biomolecular Spectroscopy. 2006. V. 63, No. 2. P. 295 – 304.
13. Yoon I. Absorption spectra of transition metal ions in glasses as functions of oxygen pressure, temperature, and composition. Ames: Iowa State University, 1977.
14. Duan X., Yuan D., Cheng X., et al. Spectroscopic properties of Co2+: ZnAl2O4 nanocrystals in sol-gel derived glass-ceramics // Journal of Physics and Chemistry of Solids. 2003. V. 64, No. 6. P. 1021 – 1025.
15. Ryba-Romanowski W., Golab S., Dominiak-Dzik G., Berkowski M. Optical spectra of a LaGaO3 crystal singly doped with chromium, vanadium and cobalt // Journal of Alloys and Compounds. 1999. V. 288, No. 1-2. P. 262 – 268.
16. Hunault M. O. J. Y., Galoisy L., Lelong G., et al. Effect of cation field strength on Co2+ speciation in alkali-borate glasses // Journal of Non-Crystalline Solids. 2016. V. 451. P. 101 – 110.
17. Sazonov A. I., Kuz’min A. Y., Purans Y., Stefanovskii S. V. Structural state of the cobalt ion in sodium borate and sodium borosilicate glasses // Journal of Applied Spectroscopy. 1991. V. 55, No. 2. P. 824 – 827.
18. Торопов Н. А., Барзаковский В. П., Лапин В. В. и др. Диаграммы состояния силикатных систем: справочник. Вып. 3. Тройные системы. Л.: Наука, 1972. 448 с.
19. Бобкова Н. М., Хотько С. А. Оксид цинка в боратных стеклообразующих системах // Стекло и керамика. 2005. №. 6. С. 16 – 18. [Bobkova N. M., Khot’ko S. A. Zinc Oxide in Borate Glass-Forming Systems // Glass and Ceram. 2005. V. 62, No. 5-6. P. 171 – 173.]
20. Бобкова Н М., Захаревич Г. Б., Кичкайло О. В. Легкоплавкие малосвинцовые стекла на основе боратных систем // Стекло и керамика. 2010. № 1. С. 15 – 18. [Bobkova N. M., Zakharevich G. B., Kichkailo O. V. Low-melting low-lead glasses based on borate systems Zinc Oxide in Borate Glass-Forming Systems // Glass and Ceram. 2010. V. 67, No. 1-2. P. 15 – 18.]
21. Мазурин О. В., Стрельцина М. В., Швайко-Швайковская Т. П. Свойства стекол и стеклообразующих расплавов: справочник: в 4 т. Т. 1. Стеклообразный кремнезем и двухкомпонентные силикатные системы. Л.: Наука, 1973. 444 с.
22. Dondi M., Ardit M., Cruciani G., Chiara Z. Tetrahedrally coordinated Co2+ in oxides and silicates: Ef-fect of local environment on optical properties // American Mineralogist. 2014. V. 99, No. 8-9. P. 1736 – 1745.
The article can be purchased
electronic!
PDF format
700 руб
DOI: 10.14489/glc.2022.09.pp.003-012
Article type:
Research Article
Make a request