Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1141
  • Pages: 3-11
  • Share:

Heading: Not-set

The effect of femtosecond laser micro-treatment in thermal and non-thermal modes on the structure of transparent glass-ceramic based on the ZnO–MgO–Al2O3–SiO2 system, characterized by increased mechanical strength and hardness, is investigated. The amorphization of nanoscale ganite (ZnAl2O4) crystals, which occurs under the irradiation of laser pulses, is confirmed by the results of electron microscopy and electron diffraction. Quantitative phase microscopy was used to evaluate changes in the refractive index in individual tracks written by a laser beam. At the repetition frequency of 10 kHz in non-thermal mode, complete amorphization of the crystal phases in volume glass-ceramic sample leads to an increase of the refractive index by the value ?n = 0.0007 in the laser processing area. The results obtained expand the potential applications of transparent glass-ceramics with increased mechanical properties and open up the possibility of forming channel waveguides in their volume by direct laserwriting.
Vladimir N. Sigaev – DSc. in Chemistry, Professor, Head of the International Center of Laser Technologies, Head of the P.D. Sarkisov International Laboratory of Functional Glass-based Materials, Head of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Andrey S. Naumov – Ph.D. Student of the Department OF Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Alexey S. Lipatiev – Ph.D. in Chemistry, Associate Professor of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Georgy Yu. Shakhgil’dyan – Ph.D. in Chemistry, Associate Professor of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Sergey V. Lotarev – Ph.D. in Chemistry, Associate Professor of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Sergey S. Fedotov – Ph.D. in Technology, Assistant of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Igor A. Karateev – Junior Researcher at the National Research Center “Kurchatov Institute”, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
1. Tan D., Zhang B., Qiu J. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications // Laser Photonics Rev. 2021. V. 15. No. 9. P. 2000455.
2. Stoian R., Colombier J. P. Advances in ultrafast laser structuring of materials at the nanoscale // Nano-photonics. 2020. V. 9, No. 16. P. 4665 – 4688.
3. Zhang B., Wang L., Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications // Laser Photonics Rev. 2020. V. 14, No. 8. P. 1900407.
4. Wlodarczyk K. L., Hand D. P., Maroto-Valer M. M. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser // Sci. Rep. 2019. V. 9, No. 1. P. 1 – 13.
5. Wolf A., Dostovalov A., Bronnikov K., et al. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femto-second laser pulses // Opt. Express. 2019. V. 27, No. 10. P. 13978 – 13990.
6. Lipatiev A., Fedotov S., Lotarev S., et al. Direct laser writing of depressed-cladding waveguides in extremely low expansion lithium aluminosilicate glass-ceramics // Opt. Laser Technol. 2021. V. 138. P. 106846.
7. Guan J. Femtosecond-laser-written integrated photonics in bulk glass-ceramics Zerodur // Ceram. 2021. V. 47, No. 7. P. 10189 – 10192.
8. Ferreira P. H. D., Fabris D. C. N., Boas M. V., et al. Transparent glass-ceramic waveguides made by femtosecond laser writing // Opt. Laser Technol. 2021. V. 136. P. 106742.
9. Bhardwaj V. R., Simova E., Corkum P. B., et al. Femtosecond laser-induced refractive index modifica-tion in multicomponent glasses // J. Appl. Phys. 2005. V. 97, No. 8. P. 083102.
10. Holand W., Beall G. H. Glass-ceramic technology. New Jersey: John Wiley & Sons, 2019. 432 p.
11. Zanotto E. A bright future for glass-ceramics // Am. Ceram. Soc. Bull. 2010. V. 89. P. 19 – 27.
12. Mirhadi B., Mehdikhani B., Askari N. Effect of zinc oxide on microhardness and sintering behavior of MgO–Al2O3–SiO2 glass-ceramic system // Solid State Sci. 2012. V. 14, No. 4. P. 430 – 434.
13. Dymshits O., Shepilov M., Zhilin A. Transparent glass-ceramics for optical applications // MRS Bull. 2017. V. 42. P. 200 – 205.
14. Chen G. H., Liu X. Y. Sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass-ceramics containing ZnO // J. Alloys Compd. 2007. V. 431, No. 1-2. P. 282 – 286.
15. Seidel S., Dittmer M., H?land W., et al. High-strength, translucent glass-ceramics in the system MgO–ZnO–Al2O3–SiO2–ZrO2 // J. Eur. Ceram. Soc. 2017. V. 37, No. 7. P. 2685 – 2694.
16. Lotarev S. V., Lipatiev A. S., Lipateva T. O., et al. Ultrafast-laser vitrification of laser-written crystalline tracks in oxide glasses // J. Non Cryst. Solids. 2019. V. 516. P. 1 – 8.
17. Шахгильдян Г. Ю., Савинков В. И., Шахгиль-дян А. Ю. и др. Влияние условий ситаллизации на твердость прозрачных ситаллов в системе ZnO–MgO–Al2O3–SiO2 // Стекло и керамика. 2020. № 11. С. 24 – 27.[Shakhgil’dyan G. Y., Savinkov V. I., Shakhgil’dyan A. Y., et al. Effect of Sitallization Conditions on the Hardness of Transparent Sitalls in the System ZnO–MgO–Al2O3–SiO2 // Glass Ceram. 2021. V. 77, No. 11. P. 426 – 428.]
18. Сигаев В. Н., Липатьев А. С., Федотов С. C. и др. Фемтосекундное лазерное модифицирование про-зрачного литиево-алюмосиликатного ситалла и исход-ного стекла, содержащего сурьму // Стекло и керамика. 2019. № 10. С. 9 – 13.[Sigaev V. N., Lipatiev A. S., Fedotov S. S., et al. Femtosecond laser modification of antimony-containing lithium-aluminum-silicate glass and transparent sitall obtained from it // Glass Ceram. 2020. V. 76, No. 9.P. 370 – 373.]
19. Golubkov V. V., Dymshits O. S., Petrov V. I., et al. Small-angle X-ray scattering and low-frequency Raman scattering study of liquid phase separation and crystallization in titania-containing glasses of the ZnO–Al2O3–SiO2 System // J. Non Cryst. Solids. 2005. V. 351, No. 8-9. P. 711 – 721.
20. Сигаев В. Н., Лошманов А. А., Ходаковская Р. Я. и др. Строение титаносиликатных стекол по дан-ным нейтронной дифракции // Физика и химия стекла. 1975. Т. 1, № 5. С. 403 – 406.
21. Richter S., Zimmermann F., D?ring S., et al. Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy // Appl. Phys. 2013. V. 110, No. 1. P. 9 – 15.
22. Kanehira S., Miura K., Hirao K. Ion exchange in glass using femtosecond laser irradiation // Appl. Phys. Lett. 2008. V. 93, No. 2. P. 023112.
23. Liu Y., Shimizu M., Zhu B., et al. Micromodification of element distribution in glass using femtosecond laser irradiation // Opt. Lett. 2009. V. 34, No. 2. P. 136 – 138.
24. Bhardwaj V. R., Simova E., Corkum P. B., et al. Femtosecond laser-induced refractive index modification in multicomponent glasses // J. Appl. Phys. 2005. V. 97, No. 8. P. 083102.
25. Fuerbach A., Gross S., Little D., et al. Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation // Proceedings of the SPIE. 2016. V. 9983. P. 14 – 20.
26. Loshmanov A. A., Sigaev V. N., Khodakovskaya R. Ya., et al. Small-angle neutron scattering on silica glasses containing titania // J. Appl. Crystallogr. 1974. V. 7, No. 2. P. 207 – 210.
27. Eaton S. M., Zhang H., Herman P. R., et al. Heat accumulation effects in femtosecond laser-written wave-guides with variable repetition rate // Opt. Express. 2018. V. 13. P. 4708 – 4716.
28. Smedskjaer M. M., Youngman R. E., Mauro J. C. Impact of ZnO on the structure and properties of sodium aluminosilicate glasses: Comparison with alkaline earth oxides // J. Non Cryst. Solids. 2013. V. 381. P. 58 – 64.
29. Choudhury D., Macdonald J. R., Kar A. K. Ultra-fast laser inscription: perspectives on future integrated applications // Laser Photonics Rev. 2014. V. 8, No. 6. P. 827 – 846.
30. Sima F., Sugioka K., Vazquez R. M., et al. Three-dimensional femtosecond laser processing for lab-on-a-chip applications // Nanophotonics. 2018. V. 7, No. 3. P. 613 – 634.
31. Gross S., Dubov M., Withford M. J. On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics // Opt. Express. 2015. V. 23, No. 6. P. 7767 – 7770.
32. Calmano T., M?ller S. Crystalline waveguide lasers in the visible and near-infrared spectral range // IEEE Journal of Selected Topics in Quantum Electronics. 2014. V. 21, No. 1. P. 401 – 413.

The article can be purchased
electronic!

PDF format

500

DOI: 10.14489/glc.2023.01.pp.003-011
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Sigaev V. N., Naumov A. S., Lipatiev A. S., Shakhgil’dyan G. Yu., Lotarev S. V., Fedotov S. S., Karateev I. A. Phase transformations under the action of femtosecond pulses in the glass-ceramic of ZnO–MgO–Al2O3–SiO2 system. Steklo i keramika. 2023:96(1):03-11. (in Russ). DOI: 10.14489/glc.2023.01.pp.003-011