Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1143
  • Pages: 33-38
  • Share:

Heading: Not-set

Lead-containing perovskite of complex composition PbNaKNb2FeO9.5 (sp. gr. Pnma, a = 5.654 ± 0.003 ?, b = 7.977 ± 0.001 ?, c = 5.646 ± 0.003 ?) was synthesized for the first time by the solid-phase reaction method. The sample is characterized by a non-porous microstructure formed by randomly oriented cubic crystallites. The band gap (?2.10 eV) of a complex perovskite for a direct allowed electronic transition was calculated from the data of the diffuse reflectance spectrum. The permittivity of the sample at room temperature and a frequency of 106 Hz reaches 1365, and the dielectric loss tangent is 0.1.
Aleksey M. Popov – bachelor of Chemistry Department, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Nikolay A. Sekushin – Doctor of Physics and Mathematics. Sci., Senior Researcher, Laboratory of Ceramic Materials Science, Institute of Chemistry FRC Komi SC UB RAS, Syktyvkar Russia, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Boris A. Makeev – candidate of geological-mineralogical sciences, Researcher at the Laboratory of Mineralogy of the Institute of geology FRC Komi SC UB RAS, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Artem A. Selyutin – Candidate of Chemical Sciences, Associate Professor, St. Petersburg State University. Saint Petersburg, Russia E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Nadezhda A. Zhuk – Candidate of Chemical Sciences, Associate Professor, Senior Researcher of Laboratory of Inorganic Materials Science, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
1. Gu H., Xu M., Song Y., et al. SrCo0.8Ti0.1Ta0.1O3 – ? perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells // Composites Part B: Engineering. 2021. V. 213. P. 108726.
2. Luo N., Li Q., Xia Z., Chu X. Phase Diagram, Temperature Stability, and Electrical Properties of (0.85 ? x)Pb(Mg1/3Nb2/3)O3 – 0.10Pb(Fe1/2Nb1/2)O3 – 0.05PbZrO3-xPbTiO3 System // J. Am. Ceram. Soc. 2012. V. 95. P. 3246 – 3253.
3. Zhuk N. A., Krzhizhanovskaya M. G., Belyy V. A., Makeev B. A. High-Temperature Crystal Chemistry of ?-, ?-, and ?-BiNbO4 Polymorphs // Inorgan. Chem. 2019. V. 58. P. 1518 – 1526.
4. Pitaro M., Tekelenburg E. K., Shao S., Loi M. A. Tin halide perovskites: from fundamental properties to solar cells // Adv. Mater. 2022. V. 34. Р. 210584.
5. Attfield J. P., Lightfoot P., Morris R. E. Perovskites // Dalton Trans. 2015. V. 44. P. 10541.
6. Ivanov S. A., Nordblad P., Tellgren R., et al. Structural, magnetic and M?ssbauer spectroscopic investigations of the magnetoelectric relaxor Pb(Fe0.6W0.2Nb0.2)O3 // Sol. St. Sci. 2007. V. 9. P. 440–450.
7. Bhalla A. Sl., Guo R., Roy R. The perovskite structure – a review of its role in ceramic science and tech-nology // Mater. Res. Innovations. 2000. V. 4. P. 3 – 26.
8. Kumar A., Kim S. H., Peddigari M., et al. High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics // Electronic Materials Letters. 2019. V. 15, No. 5. P. 323 – 330.
9. Kashyap S., Bhatt S. C., Uniyal M., Kathait G. S. Structural and dielectric properties of Lead Magnesium Niobate and Ti-doped Lead Magnesium Niobate at room temperature // Materials Today: Proceedings. 2020. V. 28. P. 28 – 31.
10. Segal D. Chemical Synthesis of Advanced Ceram-ic Materials. Cambridge: Cambridge University Press, 1991. P. 17 – 29.
11. Gaikwad S. P., Dhage S. R., Potdar H. S., et al. Co-precipitation method for the preparation of nanocrystalline ferroelectric SrBi2Nb2O9 ceramics // J. Electroceram. 2005. V. 14. P. 83 – 87.
12. Danks A. E., Hall S. R., Schnepp Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis // Mater. Horiz. 2016. V. 3. P. 91 – 112.
13. Abreu A. Jr., Zanetti S. M., Oliveira M. A. S., Thim G. P. Effect of urea on lead zirconate titanate-Pb(Zr0.52Ti0.48)O3-nanopowders synthesized by the Pechini method // J. Eur. Ceram. Soc. 2005. V. 25. P. 743 – 748.
14. Deganello F., Marc? G., Deganello G. Citrate-nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach // J. Eur. Ceram. Soc. 2009. V. 29. P. 439 – 450.
15. Byrappa K., Yoshimura M. Handbook of Hydro-thermal Technology. 2nd ed. Amsterdam: Elsevier, 2013. 796 p.
16. Gan Y. X., Jayatissa A. H., Yu Z., et al. Hydro-thermal synthesis of nanomaterials // J. Nanomater. 2020. V. 1. P. 8917013.
17. Roushown A., Masatomo Y. Space group and crystal structure of the Perovskite CaTiO3 from 296 to 1720 K // J. Sol. St. Chem. 2005. V. 178. P. 2867 – 2872.
18. Whitaker M. J., Marco J. F., Berry F. J., et al. Structural and magnetic characterisation of the pyrochlores Bi2?xFex(FeSb)O7, (x = 0.1, 0.2, 0.3), Nd1.8Fe0.2(FeSb)O7 and Pr2(FeSb)O7 // J. Solid St. Chem. 2013. V. 198. P. 316 – 322.
19. Jusoh F. A., Tan K. B., Zainal Z., et al. Investiga-tion of structural and dielectric properties of subsolidus bismuth iron niobate pyrochlores // J. Asian Ceram. Soc. 2020. V. 8. P. 957–969.
20. Jusoh F. A., Tan K. B., Zainal Z., et al. Novel pyrochlore-structured bismuth iron antimonates: Structural, impedance and electrochemical studies // Results in Phys-ics. 2021. V. 27. P. 104542.

The article can be purchased
electronic!

PDF format

700 руб

DOI: 10.14489/glc.2023.03.pp.033-038
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Popov А. М., Sekushin N. А., Макееv B. А., Sеlyutin А. А., Zhuk N. А. Synthesis and characterization of new perovskite-type PbNaKNb2FeO9.5 ceramic. Steklo i keramika. 2023:96(3):33-38. (in Russ). DOI: 10.14489/glc.2023.03.pp.033-038