Lead-containing perovskite of complex composition PbNaKNb2FeO9.5 (sp. gr. Pnma, a = 5.654 ± 0.003 ?, b = 7.977 ± 0.001 ?, c = 5.646 ± 0.003 ?) was synthesized for the first time by the solid-phase reaction method. The sample is characterized by a non-porous microstructure formed by randomly oriented cubic crystallites. The band gap (?2.10 eV) of a complex perovskite for a direct allowed electronic transition was calculated from the data of the diffuse reflectance spectrum. The permittivity of the sample at room temperature and a frequency of 106 Hz reaches 1365, and the dielectric loss tangent is 0.1.
Aleksey M. Popov – bachelor of Chemistry Department, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Nikolay A. Sekushin – Doctor of Physics and Mathematics. Sci., Senior Researcher, Laboratory of Ceramic Materials Science, Institute of Chemistry FRC Komi SC UB RAS, Syktyvkar Russia, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Boris A. Makeev – candidate of geological-mineralogical sciences, Researcher at the Laboratory of Mineralogy of the Institute of geology FRC Komi SC UB RAS, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Artem A. Selyutin – Candidate of Chemical Sciences, Associate Professor, St. Petersburg State University. Saint Petersburg, Russia E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Nadezhda A. Zhuk – Candidate of Chemical Sciences, Associate Professor, Senior Researcher of Laboratory of Inorganic Materials Science, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
1. Gu H., Xu M., Song Y., et al. SrCo0.8Ti0.1Ta0.1O3 – ? perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells // Composites Part B: Engineering. 2021. V. 213. P. 108726.
2. Luo N., Li Q., Xia Z., Chu X. Phase Diagram, Temperature Stability, and Electrical Properties of (0.85 ? x)Pb(Mg1/3Nb2/3)O3 – 0.10Pb(Fe1/2Nb1/2)O3 – 0.05PbZrO3-xPbTiO3 System // J. Am. Ceram. Soc. 2012. V. 95. P. 3246 – 3253.
3. Zhuk N. A., Krzhizhanovskaya M. G., Belyy V. A., Makeev B. A. High-Temperature Crystal Chemistry of ?-, ?-, and ?-BiNbO4 Polymorphs // Inorgan. Chem. 2019. V. 58. P. 1518 – 1526.
4. Pitaro M., Tekelenburg E. K., Shao S., Loi M. A. Tin halide perovskites: from fundamental properties to solar cells // Adv. Mater. 2022. V. 34. Р. 210584.
5. Attfield J. P., Lightfoot P., Morris R. E. Perovskites // Dalton Trans. 2015. V. 44. P. 10541.
6. Ivanov S. A., Nordblad P., Tellgren R., et al. Structural, magnetic and M?ssbauer spectroscopic investigations of the magnetoelectric relaxor Pb(Fe0.6W0.2Nb0.2)O3 // Sol. St. Sci. 2007. V. 9. P. 440–450.
7. Bhalla A. Sl., Guo R., Roy R. The perovskite structure – a review of its role in ceramic science and tech-nology // Mater. Res. Innovations. 2000. V. 4. P. 3 – 26.
8. Kumar A., Kim S. H., Peddigari M., et al. High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics // Electronic Materials Letters. 2019. V. 15, No. 5. P. 323 – 330.
9. Kashyap S., Bhatt S. C., Uniyal M., Kathait G. S. Structural and dielectric properties of Lead Magnesium Niobate and Ti-doped Lead Magnesium Niobate at room temperature // Materials Today: Proceedings. 2020. V. 28. P. 28 – 31.
10. Segal D. Chemical Synthesis of Advanced Ceram-ic Materials. Cambridge: Cambridge University Press, 1991. P. 17 – 29.
11. Gaikwad S. P., Dhage S. R., Potdar H. S., et al. Co-precipitation method for the preparation of nanocrystalline ferroelectric SrBi2Nb2O9 ceramics // J. Electroceram. 2005. V. 14. P. 83 – 87.
12. Danks A. E., Hall S. R., Schnepp Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis // Mater. Horiz. 2016. V. 3. P. 91 – 112.
13. Abreu A. Jr., Zanetti S. M., Oliveira M. A. S., Thim G. P. Effect of urea on lead zirconate titanate-Pb(Zr0.52Ti0.48)O3-nanopowders synthesized by the Pechini method // J. Eur. Ceram. Soc. 2005. V. 25. P. 743 – 748.
14. Deganello F., Marc? G., Deganello G. Citrate-nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach // J. Eur. Ceram. Soc. 2009. V. 29. P. 439 – 450.
15. Byrappa K., Yoshimura M. Handbook of Hydro-thermal Technology. 2nd ed. Amsterdam: Elsevier, 2013. 796 p.
16. Gan Y. X., Jayatissa A. H., Yu Z., et al. Hydro-thermal synthesis of nanomaterials // J. Nanomater. 2020. V. 1. P. 8917013.
17. Roushown A., Masatomo Y. Space group and crystal structure of the Perovskite CaTiO3 from 296 to 1720 K // J. Sol. St. Chem. 2005. V. 178. P. 2867 – 2872.
18. Whitaker M. J., Marco J. F., Berry F. J., et al. Structural and magnetic characterisation of the pyrochlores Bi2?xFex(FeSb)O7, (x = 0.1, 0.2, 0.3), Nd1.8Fe0.2(FeSb)O7 and Pr2(FeSb)O7 // J. Solid St. Chem. 2013. V. 198. P. 316 – 322.
19. Jusoh F. A., Tan K. B., Zainal Z., et al. Investiga-tion of structural and dielectric properties of subsolidus bismuth iron niobate pyrochlores // J. Asian Ceram. Soc. 2020. V. 8. P. 957–969.
20. Jusoh F. A., Tan K. B., Zainal Z., et al. Novel pyrochlore-structured bismuth iron antimonates: Structural, impedance and electrochemical studies // Results in Phys-ics. 2021. V. 27. P. 104542.
The article can be purchased
electronic!
PDF format
700 руб
DOI: 10.14489/glc.2023.03.pp.033-038
Article type:
Research Article
Make a request