Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1148
  • Pages: 3-11
  • Share:

Heading: Not-set

The crystallization properties of multicomponent glass based on the Li2O–Al2O3–SiO2 system are investigated.
By the Marotta et al method, temperature of 670 ?C at a holding time of 2 hours provides the maximum rate of nucleation the crystalline phase of ?-eucryptite-like solid solutions was found. The activation energy of nucleation and the Avrami parameter were measured by the DSC method, allowing to estimate the crystallization characteristics. The gradient crystallization method has established the temperature range of heat treatment, within which it is possible to obtain a transparent glass-ceramic. The refinement of regime the nucleation stage made it possible to reduce the time of the second stage crystallization required for the complete formation of the transparent glass-ceramic structure. Varying the holding time at a temperature of 710 ?C makes it possible to smoothly change the CTE in the range of ?(3…+41)?10–7 K?1 in the temperature range from ?120 to +500 ?C.
Andrey S. Naumov – PhD Student of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Roman O. Alekseev – lead engineer, Department of Chemical Technology of Glass and Glass-Ceramics, Mendeleev University of Chemical Technology of Russia (MUCTR), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Vitaliy I. Savinkov – Ph.D. in Technology, Assistant of the of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Vladimir N. Sigaev – DSc. in Chemistry, Professor, Head of the International Center of Laser Technologies, Head of the P.D. Sarkisov International Laboratory of Functional Glass-based Materials, Head of the Department of Chemical Technology of Glass and Glass-Ceramics of the Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
1. Low Thermal Expansion Glass Ceramics / eds. H. Bach, D. Krause. Berlin – Heidelberg: Springer. 2005. P. 121–235.
2. Hartmann P., Jedamzik R., Carr? A., et al. Glass ceramic ZERODUR®: Even closer to zero thermal expansion: a Review. Part 1 // JATIS. 2021. V. 7, No. 2. P. 020901.
3. Hartmann P., Jedamzik R., Carr? A., et al. Glass ceramic ZERODUR®: Even closer to zero thermal expansion: a Review. Part 2 // JATIS. 2021. V. 7, No. 2. P. 020902.
4. Schulz H. Thermal expansion of beta eucryptite // J. Am. Ceram. Soc. 1974. V. 57, No. 7. P. 313–318.
5. Lichtenstein A. I., Jones R. O., Xu H., et al. Anisotropic thermal expansion in the silicate ?-eucryptite: A neutron diffraction and density functional study // Phys. Rev. B. 1998. V. 58, No. 10. P. 6219.
6. Roy R., Agrawal D. K., McKinstry H. A. Very low thermal expansion coefficient materials // Annu. Rev. Mater. Sci. 1989. V. 19, No. 1. P. 59–81.
7. Голяев Ю. Д., Запотылько Н. Р., Недзвецкая А. А. и др. Термостабильные оптические резонаторы для Зеемановских лазерных гироскопов // Оптика и спектроскопия. 2012. Т. 113, №. 2. С. 253–255. [Golyaev, Yu. D., Zapotyl'ko, N. R., Nedzvetskaya A. A., et al. Thermally stable optical cavities for Zeeman laser gyroscopes // Opt. Spectrosc. 2012. V. 113. P. 227–229.]
8. Lipatiev A. Fedotov, S., Lotarev S., et al. Direct laser writing of depressed-cladding waveguides in extremely low expansion lithium aluminosilicate glass-ceramics // Opt. Laser Technol. 2021. V. 138. P. 106846.
9. Guan J. Femtosecond-Laser-Written Integrated Photonics in Bulk Glass-Ceramics Zerodur // Ceram. 2021. V. 47, №. 7. P. 1018–10192.
10. Mitra I. ZERODUR: a Glass-Ceramic Material Enabling Optical Technologies // Opt. Mater. Express. 2022. V. 12, No. 9. P. 3563–3576.
11. US Pat. No.: US 7,220,690 B2 Int. Cl. C03C 10/12. Glass ceramic having a low thermal expansion / I. Mitra, J. Alkemper. Date of Patent: 05.27.2007.
12. Сигаев В. Н., Савинков В. И., Шахгильдян Г. Ю. и др. О возможности прецизионного управления температурным коэффициентом линейного расширения прозрачных литиево-алюмосиликатных ситаллов вблизи нулевых значений // Стекло и керамика. 2019. № 12. С. 11–16. [Sigaev V. N., Savinkov V. I., Shakhgil’dyan G. Yu. et al. On the possibility of precision control of the linear thermal expansion coefficient of transparent lithium-aluminum-silicate sitals near zero values // Glass Ceram. 2020. V. 76. No. 11. P. 446–450.]
13. Пат. РФ 2 569 703. С1 МПК C03C 10/12. Способ получения оптического ситалла / В. Н. Сигаев, В. И. Савинков, Е. Е. Строганова и др. Опубл. 27.11.2015.
14. Wu J., Lin C., Liu J., et al. The effect of complex nucleating agent on the crystallization, phase formation and performances in lithium aluminum silicate (LAS) glasses // J. Non Cryst. Solids. 2019. V. 521. P. 119486.
15. Guo X., Yang H., Han C., et al. Crystallization and microstructure of Li2O–Al2O3–SiO2 glass containing complex nucleating agent // Thermochim. Acta. 2006. V. 444, No. 2. P. 201–205.
16. Venkateswaran C., Sreemoolanadhan H., Vaish R. Lithium Aluminosilicate (LAS) Glass-Ceramics: a Review of Recent Progress // Int. Mater. Rev. 2022. V. 67, No. 6. P. 620–657.
17. Wurth R., Munoz F., M?ller M., et al. Crystal growth in a multicomponent lithia aluminosilicate glass // Mater. Chem. Phys. 2009. V. 116, No. 2–3. P. 433–437.
18. Davis M.J., Mitra I. Crystallization measurements using DTA methods: applications to Zerodur® // J. Am. Ceram. Soc. 2003. V. 86, No. 9. P. 1540–1546.
19. Li M., Xiong C., Ma Y., et al. Study on Crystallization Process of Li2O–Al2O3–SiO2 Glass-Ceramics Based on In Situ Analysis // Materials. 2022. V. 15, No. 22. P. 8006.
20. Matusita K., Tashiro M. Rate of homogeneous nucleation in alkali disilicate glasses // J. Non Cryst. Solids. 1973. V. 11, No. 5. P. 471–484.
21. Kleebusch E., Patzig C., Krauseet M., et al. The titanium coordination state and its temporal evolution in Li2O–Al2O3–SiO2 (LAS) glasses with ZrO2 and TiO2 as nucleation agents-A XANES investigation // Ceram. Int. 2020. V. 46, No. 3. P. 3498–3501.
22. Ходаковская Р. Я., Сигаев В. Н., Плуталов Н. Ф. и др. Фазовое разделение стекол системы Li2O–Al2O3–SiO2–TiO2 на начальных стадиях ситаллизации // Физика и химия стекла. 1979. Т. 5, № 2. С. 134–140.
23. Marotta A., Saiello S., Branda F., et al. Nucleation and crystal growth in Na2O?2CaO?3SiO2 glass: a DTA study // Thermochim. Acta. 1981. V. 46, No. 2. P. 123–129.
24. Marotta A., Buri A., Branda F. Nucleation in glass and differential thermal analysis // J. Mater. Sci. 1981. V. 16. P. 341–344.
25. Kissinger H. E. Reaction kinetics in differential thermal analysis // Anal. Chem. 1957. V. 29, No. 11. P. 1702–1706.
26. Augis J. A., Bennett J. E. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method // J. Therm. Anal. Calorim. 1978. V. 13, No. 2. P. 283–292.
27. Matusita K. Kinetic study of crystallization of glass by differential thermal analysis-criterion on application of Kissinger plot // J. Non-Cryst. Solids 1980. V. 38. P. 741–746.

The article can be purchased
electronic!

PDF format

500 руб

DOI: 10.14489/glc.2023.08.pp.003-011
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Naumov A. S., Alekseev R. O., Savinkov V. I., Sigaev V. N. Nucleation and crystals growth in the volume of glass Li2O–Al2O3–SiO2 system. Steklo i keramika. 2023:96(08):03-11. (in Russ). DOI: 10.14489/glc.2023.08.pp.003-011