In this work, the effect of sintering additives based on magnesium oxide (MgO) and silicon oxide (TEOS) in concentrations from 0.02 to 0.10 wt. % and 0.2 to 0.5 wt. %, respectively, was investigated on the microstructure and optical properties of ceramics of the composition Y2,82Yb0,15Er0,03Al5O12, made from powders synthesized by chemical co-deposition.
The results presented in the paper showed that the introduction of a sintering additive based on MgO into a ceramic powder does not affect its phase composition, structural and morphological characteristics. It is shown that for ceramics of the composition Y2,82Yb0,15Er0,03Al5O12, the best value of the optical transmission coefficient was achieved at a vacuum sintering temperature of 1800 °C and a concentration of sintering additives of 0.06 wt. % MgO and 0.3 wt. % TEOS.
It is shown that the sintering mechanism of ceramics Y2,82Yb0,15Er0,03Al5O12 depends on the ratio of sintering additives MgO and TEOS.
Dmitry S. Vakalov – Candidate of Physical and Mathematical Sciences, Head of the Sector of Physical and Chemical Methods of Research and Analysis of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology, North-Caucasus Federal University (NCFU), Stavropol, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Irina S. Chikulina – Head of the Research Laboratory of Ceramics and Technochemistry of the Scientific Laboratory Complex of Clean Zones of the Faculty of Physics and Technology, North-Caucasus Federal University (NCFU), Stavropol, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Stanislav N. Kichuk – Leading Engineer of the Research Laboratory of Ceramics and Technochemistry of the Scientific Laboratory Complex of Clean Zones of the Faculty of Physics and Technology, North-Caucasus Federal University (NCFU), Stavropol, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Dmitry P. Bedrakov – Engineer of the Scientific Laboratory Complex of Clean Zones of the Faculty of Physics and Technology, North-Caucasus Federal University (NCFU), Stavropol, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Fedor F. Malyavin – Head of Ceramics Sintering Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms of Physics and Technology, North-Caucasus Federal University (NCFU), Stavropol, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Lev V. Kozhitov – Doctor of Technical Sciences, Professor of the Department of Technology of Electronics Materials, National Research Technological University “MISiS”, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
1. Fan T. Y. Laser beam combining for high-power, high-radiance sources // IEEE J. Sel. Top. Quantum Electron. 2005. V. 11, No. 3. P. 567 – 577.
2. Ikesue A., Aung Y. L. Synthesis and Performance of Advanced Ceramic Lasers // J. Am. Ceram. Soc. 2006. V. 89, No. 6. P. 1936 – 1944.
3. Mochizuki T., Unternahrer J. R., Amano S, et al. Development Of High Power Solid State Lasers At HOYA Corp. / ed. H. Weber. // SPIE Proceedings. 1989. V. 1021. P. 32.
4. Лемешев Д. О., Лукин Е. С., Макаров Н. А., Попова Н. А. Перспективы создания новых оптически прозрачных материалов на основе оксида иттрия и иттрий-алюминиевого граната // Стекло и керамика. 2008. Т. 81, № 4. С. 25 – 27. [Lemeshev D. O., Lukin E. S., Makarov N. A., Popova N. A. Prospects for creating new optically transparent materials with yttrium oxide and yttrium aluminum garnet (review) // Glass Ceram. 2008. V. 65, No. 3–4. P. 128 – 130.]
5. Лукин Е. С., Макаров Н. А., Козлов А. И. и др. Оксидная керамика нового поколения и области ее применения // Стекло и керамика. 2008. Т. 81, № 10. С. 27 – 31. [Lukin E. S., Makarov N. A., Kozlov A. I., et al. Oxide ceramics of the new generation and areas of application // Glass Ceram. 2008. V. 65, No. 9–10. P. 348 – 352.]
6. Бакунов В. С., Лукин Е. С. Особенности технологии высокоплотной технической керамики. Химические методы получения исходных порошков // Стекло и керамика. 2008. Т. 81, № 2. С. 19 – 23. [Bakunov V. S., Lukin E. S. Special characteristics of the technology of high-density technical ceramics. Chemical methods for obtaining the initial powders // Glass Ceram. 2008. V. 65, No. 1–2. P. 33 – 37.]
7. Баранова Г. В., Гринберг Е. Е., Жариков Е. В. Гибридный золь-гель метод получения наноструктурированных порошков иттрий-алюминиевого граната для лазерной керамики // Стекло и керамика. 2009. Т. 82, № 9. С. 25 – 28. [Baranova G. V., Grinberg E. E., Zharikov E. V. Hybrid sol-gel method of obtaining nanostructured yttrium-aluminum garnet powders for laser ceramic // Glas. Ceram. 2009. V. 66, No. 9–10. P. 328 – 331.]
8. Garanin S. G., Rukavishnikov N. N., Dmitryuk A. V., et al. Laser ceramic 1 Production methods // J. Opt. Technol. 2010. V. 77, No. 9. Р. 565 – 576.
9. Ter-Gabrielyan N., Merkle L. D., Kupp E. R., et al. Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm // Opt. Lett. 2010. V. 35, No. 7. P. 922.
10. Wang Y., Zhao T., Shen D., et al. Resonantly pumped Q-switched Er:YAG ceramic laser at 1645 nm // Opt. Express. 2014. V. 22, No. 20. P. 24004 – 24009.
11. Ter-Gabrielyan N., Merkle L. D., Dubinskii M., et al. Efficient Resonantly-Pumped Eye-Safe Composite Ceramic Er:YAG Laser // Lasers, Sources and Related Photonic Devices. Washington, D.C.: Optica Publishing Group, 2010. P. AWB1.
12. Reynaud M., Luiselli N., Gheorghe L., et al. Spectroscopic properties and gain cross section of Er, Yb doped Y2O3 transparent ceramic for eye-safe laser // Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. P. JTuD6.
13. Li Y., Zhou S., Lin H., et al. Fabrication of Nd:YAG transparent ceramics with TEOS, MgO and compound additives as sintering aids // J. Alloys Compd. 2010. V. 502, No. 1. P. 225 – 230.
14. Malyavin F. F., Kravtsov A. A, Tarala V. A., et al. Impact of magnesium oxide concentration and yttrium-aluminum garnet stoichiometry deviation on the micro-structure and optical transmission of YAG-based ceramics // Sci. Tech. J. Inf. Technol. Mech. Opt. 2021. V. 21, No. 6. P. 872 – 879.
15. Jia W., Wei Q., Zhang H., et al. Comparative analyses of the influence of tetraethoxysilane additives on the sintering kinetics of Nd:YAG transparent ceramics // J. Mater. Sci. Mater. Electron. 2021. V. 32, No. 14. P. 19218 – 19229.
16. Pandey S. J., Martines M., Hosta?a J., et al. Quantification of SiO2 sintering additive in YAG transparent ceramics by laser-induced breakdown spectroscopy (LIBS) // Opt. Mater. Express. 2017. V. 7, No. 5. P. 1666 – 1671.
17. Bagayev S. N., Kaminskii A. A., Kopylov Yu. L., et al. Simple method to join YAG ceramics and crystals // Opt. Mater. (Amst). 2012. V. 34, No. 6. P. 951 – 954.
18. Flores-Martinez N., Ouamara L., Remondiere F., et al. Synthesis and robocasting of YAG xerogel: one-step conversion of ceramics // Sci. Rep. 2022. V. 12, No. 1. P. 8454.
19. Meng Q., Wang X., Zhu Q., et al. The effects of Mg2+/Si4+ cosubstitution for Al3+ on sintering and photo-luminescence of (Gd,Lu)3Al5O12:Ce garnet ceramics // J. Eur. Ceram. Soc. Elsevier, 2020. V. 40, No. 8. P. 3262 – 3269.
20. Mendelson M. I. Average Grain Size in Polycrystalline Ceramics // J. Am. Ceram. Soc. 1969. V. 52, No. 8. P. 443 – 446.
21. Dai J., Pan Y., Wang W., et al. Fabrication of Tb3Al5O12 transparent ceramics using coprecipitated nanopowders // Opt. Mater. (Amst). 2017. V. 73. P. 38 – 44.
22. Tarala V. A., Nikova M. S., Chikulina I. S., et al. Estimation of Sc3+ solubility in dodecahedral and octahedral sites in YSAG:Yb // J. Am. Ceram. Soc. 2019. V. 102, No. 8. P. 4862 – 4873.
23. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. Sect. A. 1976. V. 32, No. 5. P. 751 – 767.
24. Yang H., Qin X., Zhang J., et al. The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic // Optical Materials. 2012. V. 34, No. 6. Р. 940 – 943.
25. Boulesteix R., Ma?tre A., Baumard J.-F., et al. Mechanism of the liquid-phase sintering for Nd:YAG ceramics // Opt. Mater. (Amst). 2009. V. 31, No. 5. P. 711 – 715.
26. Moreira L., Ponce L., Posada E. De, et al. Er:YAG polycrystalline ceramics: Use of SiO2 and B2O3 as sintering additives and their effects on the optical and structural properties // Rev. Cuba. Fis. 2017. V. 34, No. 2. P. 125 – 132.
27. Gu F., Peng Z., Tang H., et al. Preparation of Refractory Materials from Ferronickel Slag. 2018. P. 633 – 642.
28. Лукин Е. С., Макаров Н. А., Попова Н. А. и др. Новые виды корундовой керамики с добавками эвтектических составов // Конструкции из композиционных материалов. 2001. № 3. С. 28 – 37.
29. Лукин Е. С., Попова Н. А., Глазачев В. С. и др. Технология, свойства и применение оптически прозрачной оксидной керамики: перспективы развития // Огнеупоры и техническая керамика. Конструкции из композиционных материалов. 2015. № 3(139). C. 24 – 36.
30. Лукин Е. С., Макаров Н. А., Козлов А. И. Нанопорошки для получения оксидной керамики нового поколения // Новые огнеупоры. 2009. № 11. С. 24 – 34.
31. Nikova M. S., Tarala V. A., Malyavin F. F., et al. Sintering and microstructure evolution of Er1,5Y1,5-xScx+yAl5-yO12 garnet ceramics with scandium in dodecahedral and octahedral sites // J. Eur. Ceram. Soc. 2022. V. 42, No. 5. P. 2464 – 2477.
32. Mohammadi F., Mirzaee O., Tajally M. Influence of TEOS and MgO addition on slurry rheological, optical, and microstructure properties of YAG transparent ceramic // Opt. Mater. (Amst). Elsevier, 2018. V. 85, No. March. P. 174 – 182.
33. Song J. N., Bae B. H., Hu K. H., et al. Effects of tetraethyl orthosilicate content and sintering temperature on the properties of Y3Al5O12:Ce3+ phosphor ceramics for automotive headlamps // Mater. Today Commun. 2021. V. 28. P. 102473.
34. Zhou M., Tang B., Zhang S. Effects of adding TEOS on sintering process, morphology and microwave dielectric properties of Y3Al5O12 ceramics // Ceram. Int. Elsevier Ltd, 2021. V. 47, No. 9. P. 12826 – 12832.
35. Zhou T., Zhang L., Wei S., et al. MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution // J. Eur. Ceram. Soc. Elsevier Ltd, 2018. V. 38, No. 2. P. 687 – 693.
The article can be purchased
electronic!
PDF format
700 руб
DOI: 10.14489/glc.2023.10.pp.026-038
Article type:
Research Article
Make a request