Within the scope of the study, glasses co-doped with Sm3+/Gd3+ in the B2O3–GeO2–Bi2O3 system were synthesized,
covering compositions of 40B2O3–40GeO2–(15…17)Bi2O3–(3…2)Sm2O3–(2…1)Gd2O3 and 42,5B2O3–42,5GeO2–(11,25…12,75)Bi2O3–(2,25…1,50)Sm2O3–(1,500…0,075)Gd2O3. An assessment of luminescent characteristics was
conducted within the temperature range of 298 to 673 K. Spectral bands of photoluminescence associated with transitions between various Stark sublevels of Sm3+ ions were identified. Redistribution of the fluorescence intensity ratio corresponding to transitions 4G5/2 ? 6H9/2 ( = 645 nm) and 4G5/2 ? 6H7/2 ( = 597 nm) was observed. Based on the obtained
data, calculations of the fluorescence intensity ratio FIR, as well as relative sensitivity SR, were performed. The obtained results indicate the promising potential of these glasses as luminescent thermometric materials.
Sofya S. Zykova – master's student 2rd year of study, laboratorian of the Department of Chemistry and Technology of Crystals, Mendeleev University of Chemical Technology of Russian, Moscow, Russia
Ksenia S. Serkina – postgraduate student of the 3rd year of study, Junior Researcher of the Department of Chemistry and Technology of Crystals, Mendeleev University of Chemical Technology of Russian, Moscow, Russia
Krisina I. Runina – PhD, junior researcher of the Youth Laboratory of Functional Materials and Structures for Photonics and Electronics of the Department of Chemistry and Technology of Crystals, Mendeleev University of Chemical Technology of Russian, Moscow, Russia
Igor Ch. Avetissov – Dr, Professor, Head of the Department of Chemistry and Technology of Crystals, Mendeleev University of Chemical Technology of Russian, Moscow, Russia
Olga B. Petrova – Dr, Docent, Professor of the Department of Chemistry and Technology of Crystals, Mendeleev University of Chemical Technology of Russian, Moscow, Russia
Kirill N. Boldyrev – PhD, senior researcher at the Fourier Spectroscopy Laboratory, Institute of Spectroscopy of the Russian Academy of Sciences, Troitsk, Russia
1. Childs P. R. N., Greenwood J. R., Long C. A. Review of temperature measurement // Review of scientific instruments. 2000. V. 71. P. 2959 – 2978.
2. Wang X. D., Otto S. W., Robert J. M. Luminescent probes and sensors for temperature // Chemical Society Reviews. 2013. V. 42, Nо. 19. P. 7834 – 7869.
3. Henderson G. S., Wang H. M. Germanium coordination and the germanate anomaly // European Journal of Mineralogy. 2002. V. 14, Nо. 4. P. 733 – 744.
4. Ren J., Eckert H. Quantification of short and medium range order in mixed network former glasses of the system GeO2?NaPO3: A combined NMR and X-ray photoelectron spectroscopy study // The Journal of Physical Chemistry C. 2012. V. 116, Nо. 23. P. 12747 ? 12763.
5. Di Martino D., Santos L. F., Marques A. C., Almeida R. M. Vibrational spectra and structure of alkali germanate glasses // Journal of Non-Crystalline Solids. 2001. V. 293. P. 394 ? 401.
6. Chakraborty I. N., Condrate R. A. The vibrational spectra of B2O3-GeO2 glasses // Journal of Non-Crystalline Solids. 1986. V. 81, Nо. 3. P. 271 ? 284.
7. Kamitsos E. I. structural investigation of xRb2O?(1 – x)GeO2 glasses // The Journal of Physical Chemistry A. 1996. V. 100. P. 11755 – 11765.
8. Meera B. N., Sood A. K., Chandrabhas N., Ramakrishna J. Raman study of lead borate glasses // Journal of Non-Crystalline Solids. 1990. V. 126, Nо. 3. P. 224 – 230.
9. Yano T., Kunimine N., Shibata S., Yamane M. Structural investigation of sodium borate glasses and melts by Raman spectroscopy. II. Conversion between BO4 and BO2O? units at high temperature // Journal of Non-Crystalline Solids. 2003. V. 321, Nо. 3. P. 147 ? 156.
10. Fan H., Gao G., Wang G., Hu L. Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses // Solid-state Chemistry. 2010. V. 12, Nо. 4. P. 541 – 545.
11. Koroleva O. N., Shtenberg M. V., Zainullina R. T., et al. Vibrational spectroscopy and density of K2O?B2O3?GeO2 glasses with variable B/Ge ratio // Physical Chemistry Chemical Physics. 2019. V. 21, Nо. 23. P. 12676 ? 12684.
12. Yiannopoulos Y. D., Chryssikos G. D., Kamitsos E. I. Structure and properties of alkaline earth borate glasses // Physics and Chemistry of Glasses. 2001. V. 42, Nо. 3. P. 164 – 172.
13. Knoblochova K., Ticha H., Schwarz J., Tichy L. Raman spectra and optical properties of selected Bi2O3–PbO–B2O3–GeO2 glasses // Optical Materials. 2009. V. 31, Nо. 6. P. 895 – 898.
14. B?aszczak K., Adamczyk A., W?dzikowska M., Rokita M. Infrared studies of devitrification Li2OB2O32GeO2 glass // Journal of Molecular Structure. 2004. V. 704, Nо. 1 – 3. P. 275 – 279.
15. Taqiullah S. M., Alshahrani T., Shariq M., et al. Utilization of infrared, Raman spectroscopy for structural analysis of alkali borogermanate glasses // Journal of Taibah university for science. 2022. V. 16, Nо. 1. P. 820 – 827.
16. Bolundut L., Pop L., Bosca M., et al. Structural and spectroscopic properties of some neodymium-borogermanate glasses and glass ceramics embedded with silver nanoparticles // Ceramics International. 2017. V. 43, Nо. 15. P. 12232 – 12238.
17. Denker B., Galagan B., Osiko V., et al. Luminescent properties of Bi-doped boro-alumino-phosphate glasses // J. Appl. Phys. 2007. V. 87. P. 135 – 137.
18. Meng X. G., Qiu J. R., Peng M. Y., et al. Near infrared broadband emission of bismuth-doped aluminophosphate glass // J. Opt. Express. 2005. V. 13. P. 1635 – 1642.
19. Morassuti C. Y., Nunes L. A., Lima S. M., Andrade L. H. Eu3+-doped alumino-phosphate glass for ratiometric thermometer based on the excited state absorption // J. Lumin. 2018. V. 193. P. 39 – 43.
20. Jaiswal V. V., Bishnoi S., Swati G., et al. Luminescence properties of yttrium gado-linium orthovanadate nanophosphors and efficient energy transfer from VO43? to Sm3+ via Gd3+ ions // Arabian Journal of Chemistry. 2020. V. 13. P. 474 – 480.
21. Jaque D., Vetrone F. Luminescence nanothermometry // Nanoscale. 2012. V. 4, Nо. 15. P. 4301 – 4326.
22. Abram C., Fond B., Beyrau F. Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles // Prog. Energy Combust. Sci. 2018. V. 64. P. 93 – 156.
23. Suta M., Anti? ?., ?or?evi? V., et al. Making Nd3+ a sensitive luminescent thermometer for physiological temperatures – An account of pitfalls in Boltzmann thermometry // Nanomaterials. 2020. V. 10, Nо. 3. P. 543.
The article can be purchased
electronic!
PDF format
700 руб
DOI: 10.14489/glc.2024.03.pp.011-019
Article type:
Research Article
Make a request