Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1162
  • Pages: 28-37
  • Share:

Heading: Not-set

The results of the synthesis of complex paraniobate of the composition YErYbNbO7 using various methods are presented. The chemical composition of the final synthesis products is determined. The features of the thermal behavior of the precursors are revealed. The crystallographic parameters of single-phase samples are calculated and the sizes of crystallites are determined.
Mikhail A. Ryumin – Candidate of Chemical Sciences, senior researcher, Laboratory of Thermal Analysis and Calorimetry, Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Science (IGIC RAS), Moscow, Russia
Alexandra A. Arkhipenko – junior research assistant, Research Equipment Sharing Center of Physical Methods for Studying Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Science (IGIC RAS), Moscow, Russia
Galina E. Marina – Candidate of Technical Sciences, research associate, Research Equipment Sharing Center of Physical Methods for Studying Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Science (IGIC RAS), Moscow, Russia
Dmitry F. Kondakov – Candidate of Technical Sciences, senior researcher, Laboratory of Synthesis of Functional Materials and Mineral Processing, Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Science (IGIC RAS), Moscow, Russia
Anton V. Guskov – Candidate of Chemical Sciences, research associat, Laboratory of Thermal Analysis and Calorimetry, Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Science (IGIC RAS), Moscow, Russia
Vasilisa B. Baranovskaia – Doctor of Chemical Sciences, chief researcher, Head of Research Equipment Sharing Center of Physical Methods for Studying Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Science (IGIC RAS), Moscow, Russia
1. Wright A. J., Luo J. A step forward from high-entropy ceramics to compositionally complex ceramics: A new perspective // Journal of Materials Science. 2020. V. 55. P. 9812 – 9827.
2. Xiang H., Xing Y., Dai F.-Z., et al. High-entropy ceramics: Present status, challenges, and a look forward // Journal of Advanced Ceramics 2021. V. 10. P. 385 – 441.
3. Akrami S., Edalati P., Fuji M., Edalati K. High-entropy ceramics: Review of principles, production and applications // Materials Science and Engineering: R: Reports. 2021. V. 146. P. 100644.
4. Gali A., George E. P. Tensile properties of high- and medium-entropy alloys // Intermetallics. 2013. V. 39. P. 74 – 78.
5. Jiang S., Hu T., Gild J., et al. A new class of high-entropy perovskite oxides // Scripta Materialia. 2018. V. 142. P. 116 – 120.
6. Gild J., Samiee M., Braun J. L., et al. High-entropy fluorite oxides // Journal of the European Ceramic Society. 2018. V. 38. P. 3578 – 3584.
7. Wright A. J., Wang Q., Hu C., et al. Single-phase duodenary high-entropy fluorite/pyrochlore oxides with an order-disorder transition // Acta Materialia. 2021. V. 211. Art № 116858.
8. Wright A. J., Wang Q., Yeh Y.-T., et al. Short-range order and origin of the low thermal conductivity in compositionally complex rare-earth niobates and tantalates // Acta Materialia. 2022. V. 235. Art № 118056.
9. Zhao Z., Chen H., Xiang H., et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications // Journal of Advanced Ceramics. 2020. V. 9. P. 303 – 311.
10. Zhu J., Meng X., Xu J., et al. Ultra-low thermal conductivity and enhanced mechanical properties of high-entropy rare earth niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb) // Journal of the European Ceramic Society. 2021. V. 41. P. 1052 – 1057.
11. Zhu J., Xu J., Zhang P., et al. Enhanced mechanical and thermal properties of ferroelastic high-entropy rare-earth-niobates // Scripta Materialia. 2021. V. 200. Art № 113912.
12. Wright A. J., Wang Q., Huang C., et al. From high-entropy ceramics to compositionally-complex ceramics: A case study of fluorite oxides // Journal of the European Ceramic Society. 2020. V. 40. P. 2120 – 2129.
13. Sharma Y., Musico B. L., Gao X., et al. Single-crystal high entropy perovskite oxide epitaxial films // Physical Review Materials. 2018. V. 2. Art № 060404.
14. Witte R., Sarkar A., Kruk R., et al. High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites // Physical Review Materials. 2019. V. 3. Art № 034406.
15. Wright A. J., Wang Q., Ko S.-T., et al.Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides // Scripta Materialia. 2020. V. 181. P. 76 – 81.
16. Li F., Zhou L., Liu J.-X., et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials // Journal of Advanced Ceramics. 2019. V. 8. P. 576 – 582.
17. Siqueira K. P. F., Soares J. C., Granado E., et al. Synchrotron X-ray diffraction and Raman spectroscopy of Ln3NbO7 (Ln = La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis // Journal of Solid State Chemistry. 2014. V. 209. P. 63 – 68.
18. Yan X., Constantin L., Lu Y., et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity // Journal of American Ceramic Society. 2018. V. 101. P. 4486 – 4491.
19. Zhang Y., Guo W. M., Bin Jiang Z., et al. Dense high-entropy boride ceramics with ultra-high hardness // Scripta Materialia. 2019. V. 164. P. 135 – 139.
20. Qin Y., Liu J. X., Li F., et al. A high entropy silicide by reactive spark plasma sintering // Journal of Advanced Ceramics. 2019. V. 8. P. 148 – 152.
21. Сиротинкин В. П., Евдокимов А. А., Трунов В. К. Уточнение параметров ячеек соединений Ln3ЭО7 // Журнал неорганической химии. 1982. Т. 27. С. 1648 – 1651.
22. Allpress J. G., Rossell H. J. Fluorite-related phases Ln3MO7, Ln = rare earth, Y, or Sc, M = Nb, Sb, or Ta. I. Crystal chemistry // Journal of solid state chemistry. 1979. V. 27. P. 105 – 114.
23. Гундобин Н. В., Петров К. Н., Плоткин С. С. Колебательные спектры и строение ниобатов и танталатов состава Ln3BO7 // Журнал неорганической химии. 1977. Т. 22. С. 2973 – 2977.
24. Rooksby H. P., White E. A. D. Rare-earth niobates and tantaiates of defect fluorite- and weberite-type structures // Journal of the American Ceramic Society. 1964. V. 47. P. 94 – 96.
25. Cai Lu, Nino Juan C. Structure and dielectric properties of Ln3NbO7 (Ln = Nd, Gd, Dy, Er, Yb and Y) // Journal of the European Ceramic Society. 2007. V. 27. P. 3971 – 3976.
26. Abe R., Higashi M., Zou Zh., et al. Photocatalytic water splitting into H2 and O2 over R3TaO7 and R3NbO7 (R = Y, Yb, Gd, La): Effect of crystal structure on photocatalytic activity // Journal of Physical Chemistry. B. 2004. V. 108. P. 811 – 814.
27. Wakeshima M., Hinatsu Yu. Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln3MO7 (Ln = rare earths, M = transition metals) // Journal of Solid State Chemistry 2010. V. 183. P. 2681 – 2688.
28. Vente J. F., Helmholdt R. B., Ijdo D. J. W. Structure and magnetic properties of Pr3MO7 with M = Nb, Ta and Sb // Journal of Solid State Chemistry. 1994. V. 108. P. 18 – 23.
29. Wu F., Wu P., Zong R., Feng J. Investigation on thermo-physical and mechanical properties of Dy3(Ta1-xNbx)O7 ceramics with order-disorder transition // Ceramics International. 2019. V. 45. P. 15705 – 15710.
30. Бондарь И. А., Королева Л. Н., Торопов Н. А. Фазовые равновесия в системе Y2O3 и Nb2O5 // Известия АН СССР. Неорганические материалы. 1969. Т. 5. С. 1730 – 1733.
31. Guskov A. V., Gagarin P. G., Guskov V. N., et al. Thermodynamic properties of gadolinium tantalate Gd3TaO7 // Russian Journal of Physical Chemistry A. 2022. V. 96. P. 1195 – 1203.
32. Gagarin P. G., Guskov A. V., Guskov V. N., et al. Sm3TaO7: Heat capacity and thermal expansion // Russian Journal of Inorganic Chemistry. 2022. V. 67. P. 2183 – 2192.
33. Khomidov F. G., Kadyrova Z. R., Usmanov K. L., et al. Peculiarities of sol-gel synthesis of aluminum-magnesium spinel // Glass Ceramics. 2021. V. 78. P. 251 – 254.
34. Okubo T., Kakihana M. Low temperature synthesis of Y3NbO7 by polymerizable complex method: Utilization of a methanol-citric acid solution NbCl5 as a novel niobium precursor // Journal of alloys and compounds 1997. V. 56. P. 151 – 154.
35. Шаров В. А., Безденежных В. Г. О термическом разложении оксалатов и карбонатов лантаноидов, иттрия и скандия // Успехи химии. 1981. Т. 40. С. 1198 – 1206.
36. Chen L., Hu M., Wu F., et al. Thermo-mechanical properties of fluorite Yb3TaO7 and Yb3NbO7 ceramics with glass-like thermal conductivity // Journal of Alloys and Compounds. 2019. V. 788. Art № 1231e1239.
37. Sun G., Wang W., Sun X. Microstructure and thermal properties of high-entropy RE3MO7-type ceramics with multiple cations at RE and M sites // Ceramics International. 2022. V. 48. P. 8589 – 8595.

The article can be purchased
electronic!

PDF format

700 руб

DOI: 10.14489/glc.2024.10.pp.028-037
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Ryumin M. A., Arkhipenko A. A., Marina G. E., Kondakov D. F., Guskov A. V., Baranovskaia V. B. Features of the synthesis of ceramic paraniobate of composition YErYbNbO7. Steklo i keramika. 2024:97(10):28-37. (in Russ). DOI: 10.14489/glc.2024.10.pp.028-037