The precursor powder and luminescent ceramics YAG:Ce based on it were obtained by reverse chemical deposition. The influence of sintering additives (CaO, MgO and TEOS), the concentration of the activator Ce3+, the temperature of vacuum sintering, as well as the temperature of air annealing on the luminescent properties of YAG:Ce ceramics has been studied. The following parameters have been identified as optimal parameters for the manufacture of YAG:Ce ceramics in terms of luminescence efficiency. The concentration of the sintering additive is 0.01 f.u., the type of sintering additive is TEOS, the vacuum sintering temperature is 1800 ?C, the air annealing temperature is 600 ?C for samples with TEOS. A sample with a luminescence efficiency of 319 Lm/W was obtained when exposed to 190 mW laser radiation with a spot diameter of ~5 mm.
Viacheslav A. Lapin – Candidate of Technical Sciences, senior researcher of the Sector of Physical and Chemical Methods of Research and Analysis of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology, North-Caucasus Federal University, Stavropol, Russia
Alexander A. Kravtsov – Candidate of Technical Sciences, Head of the Nanopowder Synthesis Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology, North-Caucasus Federal University, Stavropol, Russia
Vitaly A. Tarala – Candidate of Chemical Sciences, Head of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology, North-Caucasus Federal University, Stavropol, Russia
Victoria E. Suprunchuk – Candidate of Chemical Sciences, senior researcher of the Nanopowder Synthesis Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology, North-Caucasus Federal University, Stavropol, Russia
Fedor F. Malyavin – Head of Ceramics Sintering Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology, North-Caucasus Federal University, Stavropol, Russia
Dmitry S. Vakalov – Candidate of Physical and Mathematical Sciences, Head of the Sector of Physical and Chemical Methods of Research and Analysis of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology, North-Caucasus Federal University, Stavropol, Russia
1. Narukawa Y., Ichikawa M., Sanga D., et al. White light emitting diodes with super-high luminous efficacy // J. Phys. D. Appl. Phys. 2010. V. 43, No. 35. P. 354002.
2. Feezell D. F., Speck J. S., Denbaars S. P., et al. Semipolar (2021) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting // IEEE/OSA J. Disp. Technol. 2013. V. 9, No. 4. P. 190 – 198.
3. Nishiura S., Tanabe S., Fujioka K., et al. Properties of transparent Ce:YAG ceramic phosphors for white LED // Optical Materials. North-Holland, 2011. V. 33, No. 5. P. 688 – 691.
4. Guo F., Yuan R., Yang Y., et al. An effective heat dissipation strategy improving efficiency and thermal stability of phosphor-in-glass for high-power WLEDs // Ceram. Int. 2022. V. 48, No. 9. P. 13185 – 13192.
5. Yao Q., Zhang L., Zhang J., et al. Simple mass-preparation and enhanced thermal performance of Ce:YAG transparent ceramics for high power white LEDs // Ceram. Int. Elsevier. 2019. V. 45, No. 5. P. 6356 – 6362.
6. Kwon S. B., Choi S. H., Yoo J. H., et al. Synthesis design of Y3Al5O12: Ce3+ phosphor for fabrication of ceramic converter in automotive application // Opt. Mater. (Amst). 2018. V. 80. P. 265 – 270.
7. Nishiura S., Tanabe S., Fujioka K., et al. Preparation and optical properties of transparent Ce:YAG ceramics for high power white LED // IOP Conf. Ser. Mater. Sci. Eng. 2009. V. 1. P. 012031.
8. Yang C. C., Chang C. L., Huang K. C., et al. The yellow ring measurement for the phosphor-converted white LED // Physics Procedia. 2011. V. 19. P. 182 – 187.
9. Yang H., Kim Y.-S. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors // J. Lumin. 2008. V. 128, No. 10. P. 1570 – 1576.
10. Sopicka-Lizer M., Michalik D., Plewa J., et al. The effect of Al–O substitution for Si–N on the luminescence properties of YAG:Ce phosphor // J. Eur. Ceram. Soc. 2012. V. 32, No. 7. P. 1383 – 1387.
11. Hyun Y., Bin S., Kwon M., et al. Fabrication design for a high-quality laser diode-based ceramic converter for a laser headlamp application // Ceram. Int. Elsevier Ltd and Techna Group S.r.l. 2017. No. July. P. 1 – 5.
12. Zhu Q.-Q., Li S., Yuan Q., et al. Transparent YAG:Ce ceramic with designed low light scattering for high-power blue LED and LD applications // J. Eur. Ceram. Soc. 2021. V. 41, No. 1. P. 735 – 740.
13. Hu S., Lu C., Zhou G., et al. Transparent YAG?:Ce ceramics for WLEDs with high CRI?: Ce 3 ? concentration and sample thickness effects $ // Ceram. Int. Elsevier. 2016. V. 42, No. 6. P. 6935 – 6941.
14. Feng S., Qin H., Wu G., et al. Spectrum regulation of YAG?:Ce transparent ceramics with Pr , Cr doping for white light emitting diodes application // J. Eur. Ceram. Soc. Elsevier Ltd. 2017. V. 37, No. 10. P. 3403 – 3409.
15. Won C. W., Nersisyan H. H., Won H. I., et al. Efficient solid-state route for the preparation of spherical YAG?:Ce phosphor particles // J. Alloys Compd. Elsevier B. V. 2011. V. 509, No. 5. P. 2621 – 2626.
16. Tarala V. A., Kravtsov A. A., Malyavin F. F., et al. Optical properties of non-stoichiometric YAG:Ce luminescent ceramics // Opt. Mater. (Amst). 2023. V. 143. P. 114231.
17. Kravtsov A. A., Chikulina I. S., Tarala V. A., et al. Nucleation and growth of YAG:Yb crystallites: A step towards the dispersity control // Ceram. Int. Elsevier Ltd. 2020. V. 46, No. 18. P. 28585 – 28593.
18. Hosta?a J., Picelli F., H??balov? S., et al. Sintering aids, their role and behaviour in the production of transparent ceramics // Open Ceram. 2021. V. 7.
19. Zhou T., Zhang L., Selim F. A., et al. Annealing induced discoloration of transparent YAG ceramics using divalent additives in solid-state reaction sintering // J. Eur. Ceram. Soc. Elsevier Ltd. 2017. V. 37, No. 13. P. 4123 – 4128.
20. Khanin V., Venevtsev I., Chernenko K., et al. Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga, Al)5O12 ceramics // J. Lumin. 2021. V. 237. P. 118150.
21. Kravtsov A. A., Suprunchuk V. E., Lapin V. A., et al. Evaluation of the efficiency of Cr3+ ? Cr4+ conversion in non-stoichiometric YAG: Cr ceramics // J. Eur. Ceram. Soc. 2024. V. 44, No. 12. P. 7160 – 7169.
22. Wang L., Zhuang L., Xin H., et al. Semi-Quantitative Estimation of Ce3+/Ce4+; Ratio in YAG:Ce3+; Phosphor under Different Sintering Atmosphere // Open J. Inorg. Chem. 2015. V. 05, No. 01. P. 12 – 18.
23. Pan Y. X., Wang W., Liu G. K., et al. Correlation between structure variation and luminescence red shift in YAG:Ce // J. Alloys Compd. 2009. V. 488, No. 2. P. 638 – 642.
24. Wang Y., Cheng Z., Ye J., et al. Ce:LuAG transparent ceramics for high-brightness solid-state lighting: fabrication and effect of Ce concentration // Opt. Mater. (Amst). 2024. V. 147. P. 114697.
25. Wei N., Lu T., Li F., et al. Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes // Appl. Phys. Lett. 2012. V. 101, No. 6. P. 061902.
26. Xia Z., Meijerink A. Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications // Chem. Soc. Rev. 2017. V. 46, No. 1. P. 275 – 299.
27. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. Sect. A. 1976. V. 32, No. 5. P. 751 – 767.
28. Song Y. H., Choi T. Y., Masaki T., et al. Photoluminescence properties and synthesis of nano-sized YAG:Ce3+ phosphor via novel synthesis method // Curr. Appl. Phys. 2012. V. 12, No. 2. P. 479 – 482.
29. Santos J. C. A., Silva E. P., Sampaio D. V., et al. Effect of the Ce3+ concentration on laser-sintered YAG ceramics for white LEDs applications // J. Eur. Ceram. Soc. 2020. V. 40, No. 10. P. 3673 – 3678.
30. Li Y., Luo Z., Liu Y., et al. Ce:YScAG phosphor-converted transparent ceramics with high thermal saturation and weak concentration quenching for LED and LD white lighting // Ceram. Int. 2023. V. 49, No. 2. P. 2051 – 2060.
31. Bachmann V., Ronda C., Meijerink A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce // Chem. Mater. 2009. V. 21, No. 10. P. 2077 – 2084.
32. Huang Y., Jiang D., Zhang J., et al. Sintering kinetics of YAG ceramics // J. Rare Earths. 2014. V. 32, No. 5. P. 416 – 422.
33. Boukerika A., Guerbous L., Belamri M. Effect of different annealing atmospheres on the structural and luminescence properties of Ce3+-doped YAG phosphors synthesized by sol-gel method // Optik (Stuttg). 2016. V. 127, No. 13. P. 5235 – 5239.
34. Kuklja M. M. Defects in yttrium aluminium perovskite and garnet crystals: Atomistic study // J. Phys. Condens. Matter. 2000. No. 12(13) P. 2953 – 2967.
35. Zeng Z., Shen H., Huang M., et al. Measurement of the refractive index and thermal refractive index coefficients of Nd:YAP crystal // Appl. Opt. 1990. V. 29, No. 9. P. 1281.
36. Tian Y., Chen J., Yi X., et al. A new BaAl2O4-YAG: Ce composite ceramic phosphor for white LEDs and LDs lighting // J. Eur. Ceram. Soc. 2021. V. 41, No. 7. P. 4343 – 4348.
The article can be purchased
electronic!
PDF format
700
DOI: 10.14489/glc.2025.01.pp.017-027
Article type:
Research Article
Make a request