The processes of thermal consolidation of nanoporous glass surface by means of carbon dioxide laser radiation have been investigated. Successful formation of a heat-sealed layer with a thickness of (20 ± 1) ?m was demonstrated under the following heat-sealing regime: average radiation power 10,5 W, defocusing ?f = 16 mm F-Theta lens with a focal length of 157 mm, scanning speed 40 mm/s, track spacing 100 ?m. It is shown that femtosecond pulses can be used to record birefringent structures through a thermally compacted layer, the magnitude of their phase shift being an indirect indicator of glass porosity.
Yuliana V. Spitsyna – 2nd year Master's student of the Department of Chemical Technology of Glass and Glass-Ceramics, Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia
Alexey S. Lipatiev – PhD in Chemistry, assistant of the Department of Chemical Technology of Glass and Glass-Ceramics, Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia
Semyon I. Stopkin – 2nd year master's degree in the Department of Chemical Technology of Glass and Glass-Ceramics, Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia
Yuriy V. Mikhailov – graduate student of the 2nd year of study of the Department of Chemical Technology of Glass and Glass-Ceramics, Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia
Sergey S. Fedotov – PhD in Chemistry, Associate Professor of the Department of Chemical Technology of Glass and Glass-Ceramics, Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia
Dmitriy L. Alferov – 1st year Master's student in the Department of Chemical Technology of Glass and Glass-Ceramics, Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia
Elena V. Lopatina – Ph.D. in Technology, Associate Professor of the Department of Chemical Technology of Glass and Glass-Ceramics, Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia
Vladimir N. Sigaev – DSc. in Chemistry, Professor, Head of the Department of Chemical Technology of Glass and Glass-Ceramics, Mendeleev University of Chemical Technology of Russia (Mendeleev University), Moscow, Russia
1. Piacentini S., Vogl T., Corrielli G., et al. Space qualification of ultrafast laser?written integrated waveguide optics // Laser & Photonics Reviews. 2021. V. 15, No. 2. P. 2000167.
2. Yao H., Pugliese D., Lancry M., Dai Y. Ultrafast laser direct writing nanogratings and their engineering in transparent materials // Laser & Photonics Reviews. P. 2300891.
3. Liao Y., Cheng Y. Femtosecond laser 3d fabrication in porous glass for micro-and nanofluidic applications // Micromachines. 2014. V. 5, No. 4. P. 1106 – 1134.
4. Антропова Т. В. Физико-химические процессы создания пористых стекол и высококремнеземных материалов на основе ликвирующих щелочноборосиликатных систем: автореф. дис. ... д-ра хим. наук // ИХС РАН. 2005. 45 с.
5. Stopkin S. I., Lipatiev A. S., Fedotov S. S., et al. Direct laser writing of high retardance structures in nanoporous glass // Сборник трудов конференции "International Conference on Advanced Laser Technologies (ALT)". Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Институт общей физики им. А. М. Прохорова Российской академии наук», 2023. No. 23. P. 156.
6. Lipatiev A. S., Fedotov S. S., Okhrimchuk A. G., et al. Multilevel data writing in nanoporous glass by a few femtosecond laser pulses // Applied optics. 2018. V. 57, No. 4. P. 978 – 982.
7. Fedotov S. S., Lipatiev A. S., Presniakov M. Y., et al. Laser-induced cavities with a controllable shape in nanoporous glass // Optics Letters. 2020. V. 45, No. 19. P. 5424 – 5427.
8. Lijing Z., Zakoldaev R. A., Sergeev M. M., Veiko V. P. Fluorescent bulk waveguide sensor in porous glass: Concept, fabrication, and testing // Nanomaterials. 2020. V. 10, No. 11. P. 2169.
9. Weingarten C., Schmickler A., Willenborg E., et al. Laser polishing and laser shape correction of optical glass // Journal of Laser Applications. 2017. V. 29, No. 1.
10. Сергеев М. М., Костюк Г. К., Заколдаев Р. А., Яковлев Е. Б. Лазерная пассивация пористого стекла для защиты от химической деградации и старения // Физикохимия поверхности и защита материалов. 2015. Т. 51, № 3. С. 314 – 322.
11. Вейко В. П., Костюк Г. К., Мешковский И. К. и др. Микрооптические элементы на основе локальной модификации структуры пористых стекол // Квантовая электроника. 1986. Т. 13, № 8. С. 1693 – 1696.
12. Veiko V. P., Iakovlev E. B., Kostjuk G. K., et al. New technology of optical components based on local laser thermoconsolidation of porous glasses and coats // Sol-Gel Optics. SPIE. 1990. V. 1328. P. 201 – 205.
13. Petrov D. V., Dyukareva A. S., Antropova T. V., et al. Surface sintering of porous glass plates under laser radiation // Glass physics and chemistry. 2003. V. 29. P. 456 – 460.
14. Михайлов Ю. В., Липатьев А. С., Липатьева Т. О. и др. Лазерное формирование люминесцирующих центров в объеме нанопористого стекла, допированного висму-том // Стекло и керамика. 2023. Т. 96, № 6. С. 15 – 21. [Mikhailov Yu. V., Lipatiev A. S., Lipatieva T. O., et al. Laser formation of luminescent tracks in the bismuth-doped nanoporous glass // Glass Ceram. 2023. V. 80. P. 223 – 226.]
15. Михайлов Ю. В. Химическая постобработка нанопористого стекла для минимизации содержания остаточного бора // Актуальные проблемы недропользования. 2021. С. 126 – 129.
16. Михайлов Ю. В. Структурные особенности нанопористых стекол после высокотемпературного спекания // Актуальные проблемы недропользования. 2022. С. 258 – 261.
The article can be purchased
electronic!
PDF format
700
DOI: 10.14489/glc.2025.03.pp.003-010
Article type:
Research Article
Make a request