Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1167
  • Pages: 36-51
  • Share:

Heading: Not-set

This work examines the main regularities in the formation of cement stone structure and the relationship between the properties of concrete mixes with various fillers and highly compressed materials obtained through the hyperpressing method. The objective of the study is to develop an efficient technology for producing construction materials using local, including non-standard raw materials and industrial waste, which is important both from an environmental and economic perspective. The experiment investigates the use of semi-dry pressing and hyperpressing to form concrete mixes with improved performance characteristics. It is assumed that during the pressing process, especially under hyperpressing conditions (pressures above 40 MPa), intensive interaction occurs between particles forming macroparticles, which contributes to a stronger cement stone structure. The involvement of Van der Waals forces and valence bonds between filler particles and hydrated clinker minerals, as well as molecular interactions, is considered the key mechanism for enhancing the strength and durability of the material. An important aspect is the use of low-plasticity clays, overburden rocks, and industrial waste, which significantly reduces production costs and improves environmental sustainability. The study also emphasizes that the hyperpressing technology helps reduce the technological cycle time, lowers specific energy consumption, and improves economic efficiency, making this technology promising for the production of environmentally friendly construction materials. The work contributes to the development of new methods for using secondary and local materials in construction, opening up new opportunities for improving the efficiency and sustainability of construction materials production.

Sultan I. Akhmedov – PhD, Professor, Head of the Department of Construction and Environmental Protection, Tashkent University of Architecture and Civil Engineering, Tashkent, Republic of Uzbekistan
Madaminjon M. ugli Pulatov – Basic doctoral student, Department of Construction and Environmental Protection, Tashkent University of Architecture and Civil Engineering, Tashkent, Republic of Uzbekistan
Khursand M. Saburov – PhD, Acting Associate Professor at the Department of Construction and Environmental Protection, Tashkent University of Architecture and Civil Engineering, Tashkent, Republic of Uzbekistan
Alisher U. Auesbaev – PhD, doctoral student, Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Republic of Uzbekistan; Berdakh Karakalpak State University, Nukus, Karakalpakstan, Republic of Uzbekistan
Ikromjon I. Siddikov – Doctor of Technical Sciences, Associate Professor, Department of Construction and Environmental Protection, Tashkent University of Architecture and Civil Engineering, Tashkent, Republic of Uzbekistan
Temirbek Kh. Naubeev – Doctor of Chemical Sciences, Associate Professor, Head of the Department of Oil and Gas, Berdakh Karakalpak State University, Nukus, Karakalpakstan, Republic of Uzbekistan

1. Shanks W., Dunant C. F., Drewniok Micha?. P., et al. How much cement can we do without? Lessons from cement material flows in the UK // Resour. Conserv. Recycl. 2019. V. 141. P. 441 – 454.
2. Mathieu P. The IPCC special report on carbon dioxide capture and storage. 2006. P. 1611 – 1618.
3. Wilson A. D., Nicholson J. W. Acid-based cements, their biomedical and industrial applications. Cambridge University Press, 1993.
4. Davidovits J. Environmental driven geopolymer cement applications // in: Proceedings of the Geopolymer Conference, Melbourne, Australia, October, 2002.
5. Mindess S., Young J. F. Concrete. Prentice-Hall, Inc, 1981.
6. S?leyman G?k?e H., Hatungimana D., Ramyar K. Effect of fly ash and silica fume on hardened properties of foam concrete // Constr. Build. Mater. 2019. V. 194. P. 1 – 11.
7. Bui N. K., Satomi T., Takahashi H. Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature // Constr. Build. Mater. 2018. V. 184. P. 361 – 373.
8. Pedro D., de Brito J., Evangelista L. Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume // Cem. Concr. Compos. 2018. V. 93. P. 63 – 74.
9. Wang D., Zhou X., Fu B., Zhang L. Chloride ion penetration resistance of concrete containing fly ash and silica fume against combined freezing-thawing and chloride attack // Constr. Build. Mater. 2018. V. 169. P. 740 – 747.
10. Wu W., Wang R., Zhu C., Meng Q. The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete // Constr. Build. Mater. 2018. V. 185. P. 69 – 78.
11. Vinay Kumar B. M., Ananthan H., Balaji K. V. A. Experimental studies on cement stabilized masonry blocks prepared from brick powder, fine recycled concrete aggregate and pozzolanic materials // J. Build. Eng. 2017. V. 10. P. 80 – 88.
12. Duggal S. K. Building Materials. 3rd revised ed. New Age International (P) Limited, Publishers, New Delhi, 2008. P. 240–241.
13. Bapat J. D. Mineral admixtures in cement and concrete. CRS Press-Taylor & Francis Group, New York, 2013. P. 61 – 73.
14. Siddique R., Khan M. I. Supplementary cementing materials // Engineering Materials, Springer-Verlag Berlin Heidelberg, 2011. P. 1 – 67.
15. Kumar A., Chauhan R. P. Radon diffusion and exhalation from mortar modified with fly ash: waste utilization and benefits in construction // J. Mater. Cycles Waste Manag. 2017. V. 19. P. 318 – 325. URL: https://doi.org/10.1007/s10163-015-0424-5
16. Chauhan R. P., Kumar A. Radon resistant potential of concrete manufactured using Ordinary Portland Cement blended with rice husk ash // Atmos. Environ. 2013. V. 81. P. 413 – 420.
17. Ахмедов С. И., Сабуров Х. М., Ауесбаев А. У. Повышение устойчивости подвижного песка с применением модифицированных соединителей на основе местного сырья // Новые огнеупоры. 2024. № 5. С. 100 ? 109.
18. Ауесбаев А. У., Сабуров Х. М., Мажидов С. Р. и др. Физико-механические свойства бетона, полученного на основе модифицированного суперпластификатора // Новые огнеупоры. 2024. № 9. С. 63 ? 69.
19. Juraev T. E., Ismailov O. Y., Khurmamatov A. M., et al. Comparative analysis of used engine oil recycling technologies // PPOR. 2025. V. 26, No. 1. P. 31 – 40. URL: https://doi.org/10.62972/1726-4685.2025.1.31
20. Khurmamatov A. M., Ismailov O. Y., Auesbaev A. U., et al. Increasing the efficiency of heat exchange by improving the design of heat exchangers // Nafta-Gaz. 2025. No. 1. P. 73 – 83. DOI: 10.18668/NG.2025.01.07
21. Khurmamatov A. M., Yusupova N. K., Auesbaev A. U. Possibilities for producing secondary materials from hydrocarbon waste // Nafta-Gaz. 2024. No. 11. P. 723 – 728. DOI: 10.18668/NG.2024.11.07
22. Auesbaev A. U., Khurmamatov A. M., Ismailov O. Y., et al. Study of the thickness of the boundary layer of hydrocarbons in horizontal tubes of heat exchangers // PPOR. 2024. V. 25, No. 3. P. 931 – 941. URL: https://doi.org/10.62972/1726-4685.2024.3.931
23. Shomansurov F. F., Auesbaev A. U., Ismailov O. Y., et al. Optimization of the process of heating an oil and gas condensate mixture by light naphtha vapor in heat – exchanger condenser 10E04 // Nafta-Gaz. 2024. No. 8. P. 501 – 510. DOI: 10.18668/NG.2024.08.05

The article can be purchased
electronic!

PDF format

700

DOI: 10.14489/glc.2025.03.pp.036-051
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Akhmedov S. I., Pulatov M. M., Saburov Kh. M., Auesbaev A. U., Siddikov I. I., Naubeev T. Kh. Improvement of the physico-mechanical properties of facing bricks through hyperpressing based on local raw materials. Steklo i keramika. 2025:98(3):36-51. (in Russ). DOI: 10.14489/glc.2025.03.pp.036-051