Using the sintering method near the softening temperature of the glass employed, glass-ceramic composites consisting of low-alkali aluminoborosilicate glass and barium titanate mixed in various proportions were successfully synthesized. The electrical properties of the samples were investigated in the microwave range. According to X-ray phase analysis, the synthesized samples are a mixture of barium titanate and an amorphous phase, as well as, under certain heat treatment conditions, products of glass crystallization (SiO2 – quartz and tridymite) and its interaction with the ferroelectric filler (Ba2TiSi2O8 – fresnoite). The dielectric permittivity level of the studied glass composite samples, measured at a frequency of 1 GHz, ranged from 9.2 to 25.0 with a dielectric loss tangent of 0.007…0.012.
Natalia G. Tyurnina – senior researcher, Laboratory of Organosilicon Compounds and Materials, Grebenshchikov Institute of Silicate Chemistry (Branch of the Kurchatov Institute Research Center – PNPI – ISC), St. Petersburg, Russia
Zoya G. Tyurnina – senior researcher, Laboratory of new materials for microwave applications, Saint Petersburg State Electrotechnical University “LETI” named after V. I. Ulyanov (Lenin) (ETU “LETI”); Laboratory of Organosilicon Compounds and Materials, Grebenshchikov Institute of Silicate Chemistry (Branch of the Kurchatov Institute Research Center – PNPI – ISC), St. Petersburg, Russia
Olga Yu. Sinelshchikova – senior researcher, Laboratory of New Materiаls for Microwave Applications, Saint Petersburg State Electrotechnical University “LETI” named after V. I. Ulyanov (Lenin) (ETU “LETI”); Lаboratory of Physicаl and Chemical Design and Synthesis of Functional Materiаls, Grebenshchikov Institute of Silicаte Chemistry (Branch of the Kurchatov Institute Research Center – PNPI – ISC), St. Petersburg, Russia
Ekaterina A. Balabanova – junior researcher, Joint Scientific and Technological Department “Technology of Glass” (SNTO TS), Grebenshchikov Institute of Silicate Chemistry (Branch of the Kurchatov Institute – PNPI – ISC); Laboratory of New Materials for Microwave Applications, Saint Petersburg State Electrotechnical University “LETI” named after V. I. Ulyanov (Lenin) (ETU “LETI”), St. Petersburg, Russia
Andrey V. Tumarkin – chief researcher, Laboratory of New Materials for Microwave Applications, Professor of the Department of Physical Electronics and Technology, Saint Petersburg State Electrotechnical University “LETI” named after V. I. Ulyanov (Lenin) (ETU “LETI”), St. Petersburg, Russia
Daria I. Tsygankova – lab assistant, Laboratory of Physical and Chemical Design and Synthesis of Functional Materials, Grebenshchikov Institute of Silicate Chemistry (Branch of the NRC “Kurchatov Institute” – PNPI – ISC); engineer, Laboratory of New Materials for Microwave Applications, Saint Petersburg State Electrotechnical University “LETI” named after V. I. Ulyanov (Lenin) (ETU “LETI”), St. Petersburg, Russia
1. Дятлова Е. М., Шамкалович В. И., Миненкова Г. Я., Протасевич Г. И. Синтез и исследование композиционных материалов на основе легкоплавкого свинцово-силикатного стекла и конденсаторной керамики // Стекло, ситаллы и силикаты: республиканский межведомственный сборник. Минск: Вышэйшая школа, 1978. Вып. 7. С. 117 – 123.
2. Погосян М. А., Саргсян М. С., Алексанян О. А. Синтез и исследование свойств композитов титаната бария со стеклом системы BaO–TiO2–B2O3 // Chemical Journal of Armenia. 2022. P. 283 – 293. DOI: 10.54503/0515-9628-2022.75.3-283. EDN EVOOUY. URL: https://arar.sci.am/dlibra/publication/365925/edition/340118/content
3. Brewer S. J., Deng C. Z., Ca Llaway C. P., et al. Effect of top electrode material on radiation-induced degradation of ferroelectric thin film structures // Journal of Applied Physics. 2016. V. 120, No. 2. P. 024101. URL: https://doi.org/10.1063/1.4955424
4. Zehetner J., Kraus S., Lucki M., et al. Manufacturing of membranes by laser ablation in SiC, sapphire, glass and ceramic for GaN/ferroelectric thin film MEMS and pressure sensors // Microsystem Technologies. 2016. V. 22, No. 7. P. 1883 – 1892.
5. Pel?iz-Barranco A. Advances in ferroelectrics // Norderstedt: Intechopen. 2012. P. 532.
6. Chao Jiang, Caizi Zhang, Fangfei Li, et al. Phase transition regulation and piezoelectric performance optimization of fresnoite crystals for high-temperature acceleration sensing // Journal of Materials Chemistry C. 2022. V. 10. P. 180 – 190. URL: https://doi.org/10.1039/D1TC03192A
7. Kimura M., Fujino Y., Kawamura T. New piezoelectric crystal: Synthetic fresnoite (Ba2Si2TiO8) // Applied Physics Letters. 1976. V. 29, No. 4. P. 227–228. URL: https://doi.org/10.1063/1.89045
8. Kimura M. Elastic and piezoelectric properties of Ba2Si2TiO8 // Journal of Applied Physics. 1977. V. 48, No. 7. P. 2850 – 2856. URL: https://doi.org/10.1063/1.324092
9. Shen C., Zhang H., Cong H., et al. Investigations on the thermal and piezoelectric properties of fresnoite Ba2TiSi2O8 single crystals // Journal of Applied Physics. 2014. V. 116, No. 4. P. 044106. URL: https://doi.org/10.1063/1.4891827
10. Halliyal A., Bhalla A., Markgraf S., et al. Unusual pyroelectric and piezoelectric properties of fresnoite (Ba2TiSi2O8) single crystal and polar glass-ceramics // Ferroelectrics. 1985. V. 62, No. 4. P. 27 – 38. URL: https://doi.org/10.1080/00150198508017915
11. Takahashi Y., Kitamura K., Benino Y., et al. Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass // Applied Physics Letters. 2005. V. 86, No. 9. P. 091110.
12. Takahashi Y., Benino Y., Fujiwara T., Komatsu T. Large second-order optical nonlinearities of fresnoite-type crystals in transparent surface-crystallized glasses // Journal of Applied Physics. 2004. V. 95, No. 7. P. 3503 – 3508. URL: https://doi.org/10.1063/1.1664022
13. Yamauchi H. Surface?acoustic?wave characteristics on fresnoite (Ba2Si2TiO8) single crystal // Journal of Applied Physics. 1978. V. 49, No. 12. P. 6162 – 6164. URL: https://doi.org/10.1063/1.324540
14. Melngailis J., Vetelino J., Jhunjhunwala A., et al. Surface acoustic wave properties of fresnoite, Ba2Si2TiO8 // Applied Physics Letters. 1978. V. 32, No. 4. P. 203 – 205. URL: https://doi.org/10.1063/1.89991
15. Cao S., Jiang B., Zheng Y., et al. The growth and thermal, electrical properties characterization of Ba2TiSi2O8 piezoelectric crystal // Journal of Crystal Growth. 2016. V. 451. P. 207 – 213. URL: https://doi.org/10.1016/j.jcrysgro.2016.07.014
16. Jiang C., Chen F., Yu F., et al. Thermal expansion and electro-elastic features of Ba2TiSi2O8 high temperature piezoelectric crystal // Crystals. 2019. V. 9. P. 11. URL: https://doi.org/10.3390/cryst9010011
17. Jiang C., Liu X., Yu F.-P., et al. High-temperature vibration sensor based on Ba2TiSi2O8 piezoelectric crystal with ultra-stable sensing performance up to 650 °C // IEEE Trans. Ind. Electron. 2021. V. 68. P. 12850 – 12859.
18. Chao Jiang, Caizi Zhang, Fangfei Li, et al. Phase transition regulation and piezoelectric performance optimization of fresnoite crystals for high-temperature acceleration sensing // Journal of Materials Chemistry C. 2022. V. 10. P. 180 – 190. URL: https://doi.org/10.1039/D1TC03192A
19. Robbins C. R. Synthesis and growth of fresnoite (Ba2TiSi2O8) from a TiO2 flux and its relation to the system BaTiO3–SiO2 // JOURNAL OF RESEARCH of the Notionol Bureau of Standards – A. Physics and Chemistry. 1970. V. 74A, No. 2. P. 229 – 232.
20. Rase D. E., Roy R. Phase equilibrium in the system BaTiO3·SiO2 // J. Amer. Ceram. Soc. 1955. V. 38. P. 389 – 395.
21. Kokubo T. Crystallization of BaO?TiO2–SiO2–Al2O3, glasses and dielectric properties of their crystallized products // Bull. Inst. Chem. Res. Kyoto Univ. 1969. V. 47, No. 6. P. 572 – 583.
22. Chen L. F., Ong C. K., Neo C. P., et al. Microwave electronics: measurement and materials characterization // John Wiley & Sons. 2004. Р. 552
23. Wisniewski W., Thieme K., R?ssel Ch. Fresnoite glass-ceramics – A review // Progress in Materials Science. 2018. V. 98. P. 68 – 107. URL: https://doi.org/10.1016/j.pmatsci.2018.05.002.
The article can be purchased
electronic!
PDF format
700
DOI: 10.14489/glc.2025.04.pp.003-013
Article type:
Research Article
Make a request