Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1104
  • Pages: 3-10
  • Share:

Heading: Materials and properties

Raman scattering (RS) studies of graphite-like phases BC x N (g-BC x N) obtained by various methods were carried out using an excitation laser operating in the near infrared range. The most typical for g-BC x N under this excitation are two peaks at 1300 cm-1 (D-peak) and 1595 cm-1 (G-peak). It is shown that the origin of the D and G peaks is associated with disordered graphite: the D peak is observed due to a change in the selection rules, and its intensity correlates with the size of the sp 2 graphite cluster in polycrystalline graphite; the G band is associated with the graphite mode active in the RR in the E 2g plane. Displacement of the D-peak in g-BC x N (1300 cm ? 1 ) compared to the position of this peak in graphite (1355 cm ? 1 ) can be explained by the dispersion of the position of the D-peak with the excitation wavelength. The Raman line with a center at 1260 cm ? 1 , which can be associated with the mode active in Raman, is observed only for samples with a high degree of crystallinity and for Raman spectra obtained at high pressures and high temperatures.
Cand. physical-mat. Sci. P. V. ZININ 1 ( e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ), Cand. physical-mat. D. Yu. VELIKOVSKY 1 , SK SHARMA 2 , A.K. MISRA 2 , Cand. tech. V.P. FILONENKO 3 , Ph.D. tech. Sciences A. S. ANOKHIN 4 , Cand. physical-mat. sciences IB KUTUZA 1 , S. BAT 5 , prof. R. RIDEL 5 ; 1 Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences (Russia, Moscow)
2 School of Oceanic and Terrestrial Sciences and Technologies, University of Hawaii (USA, Moscow) Honolulu, Hawaii)
3 LF Vereshchagin Russian Academy of Sciences (Russia, Troitsk)
4 Institute of Metallurgy and Materials Science named after A. A. Baikova Russian Academy of Sciences (Russia, Moscow)
5 Technical University of Darmstadt (Germany, Darmstadt)
Geim AK, Novoselov KS The rise of graphene // Nat. Mater. 2007. V. 6. No. 3.P. 183? 191. Novoselov KS, Geim AK, Morozov SV et al. Electric field effect in atomically thin carbon films // Science. 2004. V. 306. No. 5696. P. 666? 669. Kawaguchi M. B / C / N materials based on the graphite network // Adv. Mater. 1997. V. 9. No. 8.P. 615? 625. Wang SY, Zhang LP, Xia ZK et al. BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction // Angew. Chem.-Int. Edit. 2012. V. 51. No. 17.P. 4209? 4212. Raidongia K., Nag A., Hembram K. et al. BCN: A Graphene Analogue with Remarkable Adsorptive Properties // Chem.-Eur. J. 2010. V. 16. No. 1.P. 149? 157. Smith E., Dent G. Modern Raman Spectroscopy? A Practical Approach. New York: John Wiley & Sons, Ltd, 2005. Zinin PV, Ming L. C, Sharma SK et al. Ultraviolet and near-infrared Raman spectroscopy of graphitic C3N4 phase // Chem. Phys. Lett. 2009. V. 472. No. 1 ? 3.P. 69? 73. Zinin PV, Ming LC, Sharma SK et al. Ultraviolet Raman spectroscopy of the graphitic ВСx phases // Diamond and Related Materials. 2009. V. 18. No. 9.P. 1123? 1128. Zinin PV, Ming LC, Kudryashov I. et al. Raman spectroscopy of the BC3 phase obtained under high pressure and high temperature // J. Raman Spectrosc. 2007. V. 38. No. 10.P. 1362? 1367. Hubble HW, Kudryashov L, Solozhenko VL et al. Raman studies of cubic BC2N, a new superhard phase // J. Raman Spectrosc. 2004. V. 35. No. 10.P. 822? 825. Zinin PV, Ryabova AV, Davydov VA et al. Anomalous fluorescence of the spherical carbon nitride nanostructures // Chem. Phys. Lett. 2015. V. 633. P. 95? 98. Lowther JE, Zinin PV, Ming LC Vibrational energies of graphene and hexagonal structured planar BC complexes // Physical Review B. 2009. V. 79. No. 3. P. 033401. Bormett RW, Asher SA, Witowski RE et al. Ultraviolet Raman spectroscopy characterizes chemical vapor deposition diamond film growth and oxidation // J. Appl. Phys. 1995. V. 77. No. 2. P. 5916? 5923. Riedel R., Bill J., Passing G. A novel carbon materials derived from pyridine borane // Adv. Mater. 1991. V. 3. No. 11.P. 551? 552. Riedel R. Materials harder than diamond // Adv. Mater. 1992. V. 4. No. 11.P. 759? 761. Bill J., Riedel R., Passing G. Amine-Boranes as Precursors for Boron Carbonitride // Zeitschrift Fur Anorganische Und Allgemeine Chemie. 1992. V. 610. No. 4. P. 83? 90. Solozhenko VL, Andrault D, Piquet G. et al. Synthesis of superhard cubic BC2N // Appl. Phys. Lett. 2001. V. 78. No. 10.P. 1385? 1387. Hubacek M., Sato T. Preparation and properties of a compound in the BCN system // J. Solid State Chem. 1995. V. 114. No. 1.P. 258? 264. Langenhorst F., Solozhenko VL ATEM-EELS study of new diamond-like phases in the BCN system // Phys. Chem. Chem. Phys. 2002. V. 4. No. 20.P. 5183? 5188. Filonenko VP, Khabashesku VN, Davydov VA et al. Synthesis of a new cubic phase in the BCN system // Inorg. Mater. 2008. V. 44. No. 4.P. 395? 400. Filonenko VP, Zibrov IP, Petrovsky VA, Sukharev AE Features of the formation of cubic BCN phases in comparison with natural and synthetic polycrystalline diamonds // Eur. J. Mineral. 2013. V. 25. No. 3.P. 373? 383. Filonenko VP, Davydov VA, Zibrov IP et al. High pressure synthesis of new heterodiamond phase // Diamond and Related Materials. 2010. V. 19. No. 5? 6. P. 541? 544. Miyamoto Y, Cohen ML, Louie SG Ab-initio calculation of phonon spectra for graphite, BN, and BC2N sheets // Phys. Rev. B. 1995. V. 52. No. 20. P. 14971? 14975. Nozaki H., Itoh S. Lattice dynamics of BC2N // Phys. Rev. B. 1996. V. 53. No. 21. P. 14161? 14170. Yu J., Bai XD, Ahn J. et al. Highly oriented rich boron BCN nanotubes by bias-assisted hot filament chemical vapor deposition // Chem. Phys. Lett. 2000. V. 323. No. 5? 6. P. 529? 533. Fellinger TP, Su DS, Engenhorst M. et al. Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: mechanism, structure analysis and electronic properties // J. Mater. Chem. 2012. V. 22. No. 45. P. 23996? 24005. Li XF, Zhang J., Shen LH et al. Synthesis and characterization of nanocrystalline hexagonal boron carbo-nitride under high temperature and high pressure // J. Phys.-Condes. Matter. 2007. V. 19. No. 42. Ahmed YMZ, El-Sheikh SM, Ibrahim IA Characterization of Nanocrystallite Boron Carbonitride Synthesized by Combustion and Carbothermic Reaction // J. Am. Ceram. Soc. 2009. V. 92. No. 1.P. 217? 221. Uddin MR, Li J., Lin JY, Jiang H. X Carbon-rich hexagonal (BN) C alloys // J. Appl. Phys. 2015. V. 117. No. 21. P. 7. Kumar N., Raidongia K., Mishra AK et al. Synthetic approaches to borocarbonitrides, BCN (x = 1? 2) // J. Solid State Chem. 2011. V. 184. No. 11.P. 2902? 2908. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon // Phys. Rev. B. 2000. V. 61. No. 20. P. 14095? 14107. Tuinstra F., Koenig JL Raman Spectrum of Graphite // The Journal of Chemical Physics. 1970. V. 53. No. 3.P. 1126? 1130. Knight DS, White WB Characterization of diamond films by Raman spectroscopy // J. Mater. Res. 1989. V. 4. No. 2.P. 385? 393. Nemanich RJ, Solin SA, Guerard D. Raman scattering from intercalated donor compounds of graphite // Phys. Rev. B. 1977. V. 16. No. 6.P. 2965? 2972. Vidano RP, Fischbach D. B., Willis LJ, Loehr T. M. Observation of Raman band shifting with excitation wavelength for carbons and graphites // Solid State Commun. 1981. V. 39. No. 2.P. 341? 344. Matthews MJ, Pimenta MA, Dresselhaus G. et al. Origin of dispersive effects of the Raman D band in carbon materials // Phys. Rev. B. 1999. V. 59. No. 10.P. R6585. Franklin RE Crystallite Growth in Graphitizing and Non-Graphitizing Carbons // Proceedings of the Royal Society of London. Ser. A. Mathematical and Physical Sciences. 1951. V. 209. No. 1097. P. 196? 218. Oberlin A. Carbonization and graphitization // Carbon. 1984. V. 22. No. 6.P. 521? 541. Reich S., Ferrari A. C, Arena! R. et al Resonant Raman scattering in cubic and hexagonal boron nitride // Phys. Rev. B. 2005. V. 71. No. twenty.

The article can be purchased
electronic!

PDF format

700 руб

UDK 666.7:66.083
Article type: Materials and properties
Make a request

Keywords

Use the reference below to cite the publication

Zinin P. V., Velikovskii D. Yu., Sharma S. K., Misra A. K., Filonenko V. P., Anokhin. A. S., Kutuza I. B., Bhat S., Riedel R. Near-Infrared Raman Spectroscopy of Graphitic B-C-N-Materials. Steklo i keramika. 2019:92(12):3-10. (in Russ). UDK 666.7:66.083