Ежемесячный научно-технический и производственный журнал

ISSN 0131-9582

  • Сквозной номер выпуска: 1093
  • Страницы статьи: 31-36
  • Поделиться:

Рубрика: На предприятиях и в институтах

Получен алюмографитовый композит методом спарк-плазменного спекания. Выявлено влияние размера графитовых частиц, температуры компактирования и времени выдержки на процесс образования карбида алюминия. Показано, что использование более крупных пластинок графита снижает образование Al4C3 практически в 2 раза. Рассмотрено влияние содержания графита на плотность, ТКЛР и теплопроводность композита. Установлено, что при массовом содержании графита выше 70% теплофизические свойства компактов значительно ухудшаются из-за образования большого количества пор
Miracle D. Metal matrix composites ? From science to technological significance // Compos. Sci. Technol. 2005. V. 65. P. 2526. Tjong S. C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets // Mater. Sci. Eng. 2013. R 74. P. 281. Bhav Singh B., Balasubramanian M. Processing and properties of copper-coated carbon fiber reinforced aluminium alloy composites // J. Mater. Process. Technol. 2009. V. 209. P. 2104. Liu T. T., He X. B., Liu Q. et al. Fabrication and thermal conductivity of short graphite fiber/Al composites by vacuum pressure infiltration // J. Mater. Eng. Perform. 2013. V. 22. P. 1649. Ouyang H., Li H., Qi L. et al. Fabrication of short carbon fiber preforms coated with pyrocarbon/SiC for liquid metal infiltration // J. Mater. Sci. 2008. V. 43. P. 4618. Ting J. M., Lake M. L. Vapor-grown carbon-fiber reinforced carbon composites // J. Mater. Res. 1995. V. 10. P. 247. Cai J., Chen Y., Nesterenko V. F., Meyers M. A. Effect of Strain Rate on the Mechanical Properties of Aluminum Alloy Matrix Composite Filled with Discontinuous Carbon Fibers // Mater. Sci. Eng. A. 2008. V. 485. P. 681. Chawla K.K., Chawla N. Metal Matrix Composites. Hoboken: Wiley, 2006. Chiou J. M., Wei B. Y., Chen C. M. The effects of binders and heating temperatures on the properties of preforms // J. Materi. Eng. Perform. 1993. V. 2. P. 383. Jacquesson M., Girard A., Vidal-Se?tif M. H., Valle R. Fatigue behaviour of aluminium matrix composites reinforced with continuous alumina fibres // Metall. Mater. Trans. A. 2004. V. 35. P. 3289. Monje I. E., Louis E., Molina J. M. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control // Composites. A. 2013. V. 48. No. 9. Liu Y. H., Du J., Yu S. R., Wang W. Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites // Wear. 2004. V. 256. P. 275. Tan Z., Li Z., Fan G. et al. Diamond/aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties // Diam. Relat. Mater. 2013. V. 31. No. 1. Mizuuchi K., Inoue K., Agari Y. et al. Processing of diamond particle dispersed aluminum matrix composites in continuous solid?liquid co-existent state by SPS and their thermal properties // Composites. B. 2011. V. 42. P. 825. Landry K., Kalogeropoulou S., Eustathopoulos N. Wettability of carbon by aluminum and aluminum alloys // Mater. Sci. Eng. A. 1998. V. 254. P. 99. Tan Z., Li Z., Fan G. et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: Process optimization and thermal properties // Composites. B. 2013. V. 47. P. 173. Chu K., Jia C., Liang X. et al. Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering // Rare Met. 2009. V. 28. P. 646. Etter T., Schulz P., Weber M. et al. Aluminum carbide formation in interpenetrating graphite/aluminum composites // Mater Sci Eng. A. 2007. V. 448. No. 1 ? 2. P. 1 ? 6. Revzin B., Fuks D., Pelleg J. Influence of alloying on the solubility of carbon fibers in aluminium-based composites: non-empirical approach // Composites. Sci. Technol. 1996. V. 56. P. 3 ? 10. Mizuuchi K., Inoue K., Agari Y. et al. Processing of diamond particle dispersed aluminum matrix composites in continuous solid?liquid co-existent state by SPS and their thermal properties // Composites. B. Eng. 2011. V. 42. No. 4. P. 825 ? 831. Chen J. K., Huang I. S. Thermal properties of aluminum?graphite composites by powder metallurgy // Composites. B. Eng. 2012. V. 42. No. 2. P. 790 ? 825. Hiroki Kurita, Silvain J.-F., Akira Kawasaki. Microstructure of a carbon fiber-reinforced aluminum matrix composite fabricated by spark plasma sintering in various pulse conditions // Journal of Materials Science. 2014. V. 49. No. 8. P. 3268 ? 3275. Lumley R. N., Sercombe T. B., Schaffer G.B. Surface oxide and the role of magnesium during the sintering of aluminium // Metall Mater Trans. A. 1999. V. 30A. P. 457 ? 463. Turner P. S. Thermal-expansion stresses in reinforced plastics // J. Res. NBS. 1946. V. 37. P. 239 ? 250. Kerner E. H. The Elastic and Thermo-elastic Properties of Composite Media // Proc. Phys. Soc. B. 1956. V. 69. P. 808 ? 813. Khor K. A., Yu L. G., Andersen O., Stephani G. Effect of spark plasma sintering (SPS) on the microstructure and mechanical properties of randomly packed hollow sphere (RHS) cell wall // Mater. Sci. Eng. A. 2003. V. 356. P. 130 ? 135. Anselmi-Tamburini U., Gennari S., Garay J. E., Munir Z. A. Fundamental investigations on the spark plasma sintering/syn-thesis process. II. Modeling of current and temperature distributions // Mater. Sci. Eng. A. 2005. V. 394. P. 139 ? 148. Kurita H., Kwon H., Estili M, Kawasaki A. Multi-walled carbon nanotube-aluminium matrix composites prepared by combination of hetero-agglomeration method, spark plasma sin-tering and hot extrusion // Mater. Trans. 2011. V. 52. No. 10. P. 1960 ? 1965. Lalet G., Kurita H., Heintz J.-M. et al. Thermal expansion coefficient and thermal fatigue ofdiscontinuous carbon fiber-reinforced copper and aluminum matrix composites without interfacial chemical bond // J. Mater. Sci. 2014. V. 49. P. 397 ? 402. doi:10.1007/s10853-013-7717-7. Eriksson M., Shen Z., Nygren M. Fast densification and deformation of titanium powder // Powder Metall. 2005. V. 48. P. 231 ? 236. Chang C. J., Chang C. H., Hwang J. D., Kuo C. T. Thermal characterization of high thermal conductive graphites reinforced aluminum matrix composites // Proceedings of IMPACT conference 2009 international 3D IC conference. Taipei, Taiwan, October, 2009. Taipei, 2009. Baglari S., Kole M., Dey T. K. Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene-fly ash composites // Ind. J. Phys. 2011. V. 85. No. 4. P. 559 ? 73.

Статью можно приобрести
в электронном виде!

PDF формат

500 руб

УДК 666.3.032.62
Тип статьи: На предприятиях и в институтах
Оформить заявку

Ключевые слова

Для цитирования статьи

Рубинковский Н. А., Шорников Д. П., Тенишев А. В., Залужный А. Г., Жолнин А. Г. Получение алюмографитового композита методом спарк-плазменного спекания // Стекло и керамика. 2019. Т. 92, № 1. С. 31-36. УДК 666.3.032.62