The effect of molarity (from 3.64 to 1.74 M) of a solution of an alkaline activator (ALA) and temperature (from 10 to 20 ° C) of a mixture of alkali-activated materials (ALA) based on chamotte and metakaolin on the rheological properties was investigated. the development of the structure during curing and the strength of the samples after firing at temperatures of 800 and 1000 ° C. It has been established that a decrease in the molarity of the ALCA and an increase in temperature reduce the viscosity of the AHAM mixture. An increase in the molarity of the PCA and the temperature of the mixture accelerates the process of structure formation and leads to an increase in the strength of the samples during curing from 8.8 to 22 MPa and from 6.8 to 20 MPa after firing at a temperature of 1000 ° C. Also, the density of samples after firing increases from 1270 to 1510 kg / m 3 , and water absorption decreases from 15.4 to 13.4 & # 37;
Juenger MCG, Winnefeld F., Provis JL et al. Advances in alternative cementitious binders // Cement and Concrete Research. 2011. V. 41. P. 1232? 1243.
Habert G., d? Espinose de Lacaillerie JB, Roussel N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends // Journal of Cleaner Production. 2011. V. 19. P. 1229? 1238.
Duxson P., Fernandez-Jimenez A., Provis JL et al. Geopolymer technology: the current state of the art // Journal of Materials Science. 2007. V. 42. P. 2917? 2933.
Panagiotopoulou Ch., Kontori E., Perraki Th., Kakali G. Dissolution of aluminosilicate minerals and by-products in alkaline media // Journal of Materials Science. 2007. V. 42. P. 2967? 2973.
Weng L., Sagoe-Crentsil K., Brown T., Song S. Effects of aluminates on the formation of geopolymers // Materials Science and Engineering. 2005. V. 117. P. 163? 168.
Palomo?., Alonso S., Fernandez-Jim? Nez A. et al. Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products // Journal of the American Ceramic Society. 2004. V. 87. P. 1141? 1145.
Fern? Ndez-Jim? Nez A., Palomo A., Sobrados I., Sanz J. The role played by the reactive alumina content in the alkaline activation of fly ashes // Microporous and Mesoporous Materials. 2006. V. 91. P. 111? 119.
Davidovits J. Geopolymers: inorganic polymeric new materials // Journal of Thermal Analysis. 1991. V. 37. P. 1633? 1656.
Duxson P., Lukey GC, Deventer JSJV The thermal evolution of metakaolin geopolymers: Part 2. Phase stability and structural development // Journal of Non-Crystalline Solids. 2007. V. 353. P. 2186? 2200.
Shi C., Jim? Nez AF, Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement // Cement and Concrete Research. 2011. V. 41. P. 750? 763.
Ismail I., Bernal SA, Provis JL et al. Microstructural changes in alkali activated fly ash / slag geopolymers; with sulfate exposure // Materials and Structures. 2013. V. 46. P. 361? 373.
Wan Q., Rao F., Song S. et al. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si / Al ratios // Cement and Concrete Composites. 2017. V. 79. P. 45? 52.
Vance K., Dakhane A., Sant G., Neithalath N. Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration // Rheologica Acta. 2014. V. 53. P. 843? 855.
Poulesquen A., Frizon F., Lambertin D. Rheological behavior of alkali-activated metakaolin during geopolymerization // Journal of Non-Crystalline Solids. 2013. V. 357. P. 3565? 3571.
Xu H., Van Deventer JSJ The geopolymerisation of alumino-silicate minerals // International Journal of Mineral Processing. 2000. V. 59. P. 247? 266.
Murayama N., Yamamoto H., Shibata J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction // International Journal of Mineral Processing. 2002. V. 64. P. 1? 17.
Nath P., Sarker PK Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature // Cement and Concrete Composites. 2015. V. 55. P. 205? 214.
G? Ll? H., Cevik A., Al-Ezzi KMA, G? Lsan ME On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash // Construction and Building Materials. 2019. V. 196. P. 594? 610.
Zhang Z., Provis JL, Reid A., Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete // Cement and Concrete Composites. 2015. V. 62. P. 97? 105.
Palacios M., Alonso MM, Varga C., Puertas F. Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes // Cement and Concrete Composites. 2019. V. 95. P. 277? 284.
Favier A., ??Habert G., d'Espinose de Lacaillerie JB, Roussel N. Mechanical properties and compositional heterogeneities of fresh geopolymer pastes // Cement and Concrete Research. 2013. V. 48. P. 9? 16.
Hardjito D., Cheak CC, Lee CHL Strength and setting times of low calcium fly ash-based geopolymer mortar // Modern Applied Science. 2008. V. 2. P. 3? 11.
Reddy BSK, Varaprasad J., Reddy KNK Strength and workability of low lime fly-ash based geopolymer concrete // Indian Journal of Science and Technology. 2010. V. 3.P. 1188-1189.
Memon FA, Nuruddin MF, Khan S. et al. Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete // Journal of Engineering Science and Technology. 2013. V. 8. P. 44? 56.
Zhang D.-W., Wang D., Liu Z., Xie F. Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content // Construction and Building Materials. 2018. V. 187. P. 674? 680.
Pouhet R., Cyr M., Bucher R. Influence of the initial water content in flash calcined metakaolin-based geopolymer // Construction and Building Materials. 2019. V. 201. P. 421? 429.
Bernal SA, Rodr? Guez ED, de Guti? Rrez RM et al. Mechanical and thermal characterization of geopolymers based on silicate-activated metakaolin / slag blends // Journal of Materials Science. 2011. V. 46. P. 5477? 5486.
Williams RP, van Riessen A. Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD // Fuel. 2010. V. 89. P. 3683? 3692.
Rickard WDA, Temuujin J., van Riessen. A. Thermal analysis of geopolymer pastes synthesized from five fly ashes of variable composition // Journal of Non-Crystalline Solids. 2012. V. 358. P. 1830? 1839.
Zhao Y., Ye J., Lu X. et al. Preparation of sintered foam materials by alkali-activated coal fly ash // Journal of Hazardous Materials. 2010. V. 174. P. 108? 112.
Kong DLY, Sanjayan JG, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures // Cement and Concrete Research. 2007. V. 37. P. 1583? 1589
Duxson P., Lukey GC, Jannie SJ, van Deventer JSJ Physical evolution of Na-geopolymer derived from metakaolin up to 1000 ° C // Journal of Materials Science. 2007. V. 42. P. 3044? 3054.
Barbosa VFF, MacKenzie KJD Synthesis and thermal behavior of potassium sialate geopolymers // Materials Letters. 2003. V. 57. P. 1477? 1482.
Bell JL, Driemeyer PE, Kriven WM Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer // Journal of the American Ceramic Society. 2009. V. 92. P. 607? 615.
Dembovska L., Bumanis G., Vitola L., Bajare D. Influence of fillers on the alkali activated chamotte // IOP Conf. Series: Materials Science and Engineering, 2017.
Puertas F., Varga C., Alonso MM Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution // Cement and Concrete Composites. 2014. V. 53. P. 279? 288.
Tekin I. Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes // Construction and Building Materials. 2016. V. 127. P. 607? 617.
Lee S., van Riessen A., Chon C.-M. Benefits of Sealed-Curing on Compressive Strength of Fly Ash-Based Geopolymers // Materials. 2016. V. 9. P. 598.
Provis JL, Duxson P., Van Deventer JSJ, Lukey GC The Role of Mathematical Modeling and Gel Chemistry in Advancing Geopolymer Technology // Chemical Engineering Research and Design. 2005. V. 83. P. 853? 860.
Pyatina T., Sugama T. Set controlling additive for thermal-shock-resistant cement // GRC Transactions. 2014. V. 38. P. 251? 257.
Fernandez-Jimenez A., Pastor JY, Mart? N A., Palomo A. High-temperature resistance in alkali-activated cement // Journal of the American Ceramic Society. 2010. V. 93. No. 10.P. 3411? 3417.
The article can be purchased
electronic!
PDF format
700 руб
UDK 666.7-12
Article type:
Not-set
Make a request