Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1118
  • Pages: 3-8
  • Share:

Heading: Not-set

The effect of the electric field intensity and the percentage of multi-layer carbon nanotubes (MCNTs) on the strength of a composite consisting of unidirectional glass fibers has been studied. The results of tests of annular samples made by the winding method for different contents of MWCNTs in the composite and at different values ??of the electric field intensity are presented. Based on the test results, strength curves were constructed and a formula was obtained for the dependence of the strength of the composite on the intensity of the electric field and the percentage of MCNTs
Dr. Tech. Sciences A. N. KRASNOVSKY (This email address is being protected from spambots. You need JavaScript enabled to view it.), Cand. tech. Sciences I. A. KAZAKOV, P. S. KISHCHUK; FGBOU VO & # 171; Moscow State Technological University & # 171; STANKIN & # 187; (MSTU & # 171; STANKIN & # 187;) & # 187; (Russia, Moscow)
Rana Sohel, Ramasamy Alagirusamy, Joshi Mangala. A Review on Carbon Epoxy Nanocomposites // Journal of Reinforced Plastics and Composites. 2008 V. 28. P. 461? 487. Krasnovskii AN, Kishchuk PS Effect of catalyst mass on CVD synthesis of carbon nanotubes // Russ. J. Appl. Chem. 2017. V. 90, No. 5.P. 721? 725. Kazakov IA, Krasnovskii AN Effect of functionalized multiwalled carbon nanotubes on the feasibility of fabrication of composite glass fiber reinforced plastic rebars // Russ. J. Appl. Chem. 2016. V. 89, No. 8.P. 1309? 1316. Ajayan PM, Schadler LS, Giannaris C., Rubio A. Single Walled Carbon Nanotube? Polymer Composites: Strength and Weakness // Adv. Mater. 2000. V. 12, No. 10.P. 750? 753. Hao Y., Qunfeng Z., Fei W. et al. Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism // Carbon. 2003. V. 41. P. 2855? 2863. Mou'ad AT, Sahrim Hj. A. Characterization and Morphology of Modified Multi-Walled Carbon Nanotubes Filled Thermoplastic Natural Rubber (TPNR) Composite // Syntheses and Applications of Carbon Nanotubes and Their Composites. 2013. No. 6.P. 117? 143. Kumar S., Alam MA, Murthy JY Effect of percolation on thermal transport in nanotube composites // Appl. Phys. Lett. 2007. V. 90, No. 10.P. 104105? 104105-3. Kazakov IA, Krasnovskii AN, Kuznetsov AG The use of optimization algorithm for assessing effects of Carboxyl Functionalized MWCNTs on the productivity of nidltrusion process // Journal of Nanostructures. 2017. V. 7, No. 2. P. 89? 96. Krasnovskii AN, Kishchuk PS, Mukhin TM Study of the quality of carbon nanotubes produced by chemical vapor deposition // Russ. J. Appl. Chem. 2017. V. 90, No. 9.P. 1484? 1487. Chen Q., Dai L., Gao M. et al. Plasma Activation of Carbon Nanotubes for Chemical Modification // The Journal of Physical Chemistry B. 2000. V. 105, No. 3.P. 618? 622. Qian EC, Dickey AR, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites // Appl. Phys. Lett. 2000. V. 76. P. 2868? 2870. Li Y., Wei Bingqing, Liang J. et al. Transformation of carbon nanotubes to nanoparticles by ball milling process // Carbon. 1999. V. 37. P. 493? 497. Jamali S., Paiva M., Covas J. Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes // Polymer Testing. 2013. V. 32. P. 701? 707. Kazakov IA, Krasnovskii AN, Kishchuk PS The influence of randomly oriented CNTs on the elastic properties of unidirectionally aligned composites // Mechanics of Materials. 2019. V. 134. P. 54? 60. Blattmann CO, Sotiris EP Single-Step Fabrication of Polymer Nanocomposite Films // Materials. 2018. V. 11, No. 7.P. 1177, 1? 9. Xie X.-L., Mai Y.-W., Zhou X.-P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review // Mat. Sci. and Eng .: R: Reports. 2005. V. 49, No. 4. P. 89? 112. Wang M.-W., Hsu T.-C., Weng C.-H. Alignment of MWCNTs in polymer composites by dielectrophoresis // The European Physical Journal Applied Physics. 2008. V. 42, No. 3.P. 241? 246. Bellan C., Bossis G. Field dependence of viscoelastic properties of MR elastomers // Int. J. of Modern Phys. B. 2002. V. 16, No. 17-18. P. 2447? 2453. Coquelle E., Bossis G. Mullins effect in elastomers filled with particles aligned by a magnetic field // Int. J. Solid and Structures. 2006. V. 43, No. 25-26. P. 7659? 7672. Courty S., Mine J., Tajbakhsh AR, Terentjev EM Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators // Europhys. Lett. 2003. V. 64, No. 5.P. 654? 660. Latypov ZZ Anisotropic reinforcement of polymeric nanocompozit properties by electromagnetic orientations of carbon nanotubes // Scientific device engineering. 2011. V. 21, No. 1.P. 50? 52. Yamamoto K., Akita S., Nakayama Y. Orientation of carbon nanotubes using electrophoresis // Jpn. J. Appl. Phys. 1996. V. 35, No. 2.P. 917? 919. Yamamoto K., Akita S., Nakayama Y. Orientation and purification of carbon nanotubes using ac electrophoresis // J. Phys. D-Appl. Phys. 1998. V. 31, No. 8.P. 34? 36. Ichida M., Mizuno S., Kataura H. et al. Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer // Appl. Phys. A Mater. Sci. Process. 2004. V. 78. P. 1117? 1120. Jin L., Bower C., Zhou O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching // Appl. Phys. Lett. 1998. V. 73. P. 1197? 1199. Rozhin AG, Sakakibara Y., Kataura H et al. Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol // Chem. Phys. Lett. 2005. V. 405. P. 288? 293. Fagan JA, Simpson JR, Landi BJ et al. Dielectric Response of Aligned Semiconducting Single-Wall Nanotubes // Phys. Rev. Lett. 2007. V. 98, No. 14.P. 147402, 1? 4. Haggenmueller R., Gommans HH, Rinzler AG, Fischer JE Aligned single-wall carbon nanotubes in composites by melt processing methods // Chem. Phys. Lett. 2000. V. 330. P. 219? 225. Fischer D., P? Tschke P., Br? Nig H., Janke A. Investigation of the Orientation in Composite Fibers of Polycarbonate with Multiwalled Carbon Nanotubes by Raman Microscopy // Macromol. Symp. 2005. V. 230. P. 167? 172. Ajayan PM, Stephan O., Colliex C., Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite // Science. 1994. V. 265. P. 1212? 1214. Wood JR, Zhao Q., Wagner HD Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy // Compos. Part A. Appl. Sci. Manuf. 2001. V. 32. P. 391? 399. Shoji S, Suzuki H, Zaccaria R et al. Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film // Phys. Rev. B. 2008. V. 77. P. 153407, 1? 4. Walters DA, Casavant MJ, Qin XC et al. In-plane aligned membranes of carbon nanotubes // Chem. Phys. Lett. 2001. V. 338. P. 14? 20. Fischer JE, Zhou W., Vavro J. et al. Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties // J. Appl. Phys. 2003. V. 93. P. 2157? 2163. Tian Y., Park JG, Cheng Q. et al. The fabrication of singlewalled carbon nanotube / polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment // Nanotechnology. 2009. V. 20. No. 33. P. 335601, 1? 7. Kumar S., Kaur H., Kaur I. et al. Magnetic fieldguided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles // J. Mater. Sci. 2011. V. 47. P. 1489? 1496. Correa-Duarte MA, Grzelczak M., Salgueiri? O-Maceira V. et al. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles // J. Phys. Chem. B. 2005. V. 109. P. 19060? 19063. Kord? S K., Mustonen T., T? Th G. et al. Magnetic-Field Induced Efficient Alignment of Carbon Nanotubes in Aqueous Solutions // Chem. Mater. 2007. V. 19. P. 787? 791. Korneva G., Ye H., Gogotsi Y. et al. Carbon nanotubes loaded with magnetic particles // Nano Lett. 2005. No. 5.P. 879? 884. Oliva-Avil's AI, Aviles F., Sosa V., Seidel G. Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields // Carbon. 2014. V. 69. P. 342? 354. Chen, Y., Shaw DT, Guo L. Field emission of different oriented carbon nanotubes // Appl. Phys. Lett. 2000. V. 76. No. 17.P. 2469? 2471. Monti M., Natali M., Torre L., Kenny J. The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field // Carbon. 2012. V. 50. P. 2453? 2464.

The article can be purchased
electronic!

PDF format

500 руб

UDK 666.189.21
Article type: Not-set
Make a request

Keywords

Use the reference below to cite the publication

Krasnovskii A. N., Kazakov I. A., Kischuk P. S Glass Composite Hardening with Multilayer Carbon Nanotubes Aligned with a Constant Electric Field. Steklo i keramika. 2021:94(2):3-8. (in Russ). UDK 666.189.21