Ежемесячный научно-технический и производственный журнал

ISSN 0131-9582

  • Сквозной номер выпуска: 1118
  • Страницы статьи: 3-8
  • Поделиться:

Рубрика: Без рубрики

Проведено изучение влияния интенсивности электрического поля и процентного содержания много-слойных углеродных нанотрубок (МУНТ) на прочность композита, состоящего из однонаправленных стеклянных волокон. Приведены результаты испытаний кольцевых образцов, изготовленных методом намотки, для различного содержания МУНТ в композите и при различных величинах интенсивности электрического поля. По результатам испытаний построены кривые прочности и получена формула зависимости прочности композита от интенсивности электрического поля и процентного содержания МУНТ
Д-р техн. наук А. Н. КРАСНОВСКИЙ (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.), канд. техн. наук И. А. КАЗАКОВ, П. С. КИЩУК ; ФГБОУ ВО «Московский государственный технологический университет «СТАНКИН» (МГТУ «СТАНКИН»)» (Россия, г. Москва)
Rana Sohel, Ramasamy Alagirusamy, Joshi Mangala. A Review on Carbon Epoxy Nanocomposites // Journal of Reinforced Plastics and Composites. 2008 V. 28. P. 461 ? 487. Krasnovskii A. N., Kishchuk P. S. Effect of catalyst mass on CVD synthesis of carbon nanotubes // Russ. J. Appl. Chem. 2017. V. 90, No. 5. P. 721 ? 725. Kazakov I. A., Krasnovskii A. N. Effect of functionalized multiwalled carbon nanotubes on the feasibility of fabrication of composite glass fiber reinforced plastic rebars // Russ. J. Appl. Chem. 2016. V. 89, No. 8. P. 1309 ? 1316. Ajayan P. M., Schadler L. S., Giannaris C., Rubio A. Single Walled Carbon Nanotube ? Polymer Composites: Strength and Weakness // Adv. Mater. 2000. V. 12, No. 10. P. 750 ? 753. Hao Y., Qunfeng Z., Fei W. et al. Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism // Carbon. 2003. V. 41. P. 2855 ? 2863. Mou'ad A. T., Sahrim Hj. A. Characterization and Morphology of Modified Multi-Walled Carbon Nanotubes Filled Thermoplastic Natural Rubber (TPNR) Composite // Syntheses and Applications of Carbon Nanotubes and Their Composites. 2013. No. 6. P. 117 ? 143. Kumar S., Alam M. A., Murthy J. Y. Effect of percolation on thermal transport in nanotube composites // Appl. Phys. Lett. 2007. V. 90, No. 10. P. 104105 ? 104105-3. Kazakov I. A., Krasnovskii A. N., Kuznetsov A. G. The use of optimization algorithm for assessing effects of Carboxyl Functionalized MWCNTs on the productivity of nidltrusion process // Journal of Nanostructures. 2017. V. 7, No. 2. P. 89 ? 96. Krasnovskii A. N., Kishchuk P. S., Mukhin T. M. Study of the quality of carbon nanotubes produced by chemical vapor deposition // Russ. J. Appl. Chem. 2017. V. 90, No. 9. P. 1484 ? 1487. Chen Q., Dai L., Gao M. et al. Plasma Activation of Carbon Nanotubes for Chemical Modification // The Journal of Physical Chemistry B. 2000. V. 105, No. 3. P. 618 ? 622. Qian E. C., Dickey A. R., Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites // Appl. Phys. Lett. 2000. V. 76. P. 2868 ? 2870. Li Y., Wei Bingqing, Liang J. et al. Transformation of carbon nanotubes to nanoparticles by ball milling process // Carbon. 1999. V. 37. P. 493 ? 497. Jamali S., Paiva M., Covas J. Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes // Polymer Testing. 2013. V. 32. P. 701 ? 707. Kazakov I. A., Krasnovskii A. N., Kishchuk P. S. The influence of randomly oriented CNTs on the elastic properties of unidirectionally aligned composites // Mechanics of Materials. 2019. V. 134. P. 54 ? 60. Blattmann C. O., Sotiris E. P. Single-Step Fabrication of Polymer Nanocomposite Films // Materials. 2018. V. 11, No. 7. P. 1177, 1 ? 9. Xie X.-L., Mai Y.-W., Zhou X.-P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review // Mat. Sci. and Eng.: R: Reports. 2005. V. 49, No. 4. P. 89 ? 112. Wang M.-W., Hsu T.-C., Weng C.-H. Alignment of MWCNTs in polymer composites by dielectrophoresis // The European Physical Journal Applied Physics. 2008. V. 42, No. 3. P. 241 ? 246. Bellan C., Bossis G. Field dependence of viscoelastic properties of MR elastomers // Int. J. of Modern Phys. B. 2002. V. 16, No. 17?18. P. 2447 ? 2453. Coquelle E., Bossis G. Mullins effect in elastomers filled with particles aligned by a magnetic field // Int. J. Solid and Structures. 2006. V. 43, No. 25?26. P. 7659 ? 7672. Courty S., Mine J., Tajbakhsh A. R., Terentjev E. M. Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators // Europhys. Lett. 2003. V. 64, No. 5. P. 654 ? 660. Latypov Z. Z. Anisotropic reinforcement of polymeric nanocompozit properties by electromagnetic orientations of carbon nanotubes // Scientific device engineering. 2011. V. 21, No. 1. P. 50 ? 52. Yamamoto K., Akita S., Nakayama Y. Orientation of carbon nanotubes using electrophoresis // Jpn. J. Appl. Phys. 1996. V. 35, No. 2. P. 917 ? 919. Yamamoto K., Akita S., Nakayama Y. Orientation and purification of carbon nanotubes using ac electrophoresis // J. Phys. D-Appl. Phys. 1998. V. 31, No. 8. P. 34 ? 36. Ichida M., Mizuno S., Kataura H. et al. Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer // Appl. Phys. A Mater. Sci. Process. 2004. V. 78. P. 1117 ? 1120. Jin L., Bower C., Zhou O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching // Appl. Phys. Lett. 1998. V. 73. P. 1197 ? 1199. Rozhin A. G., Sakakibara Y., Kataura H. et al. Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol // Chem. Phys. Lett. 2005. V. 405. P. 288 ? 293. Fagan J. A., Simpson J. R., Landi B. J. et al. Dielectric Response of Aligned Semiconducting Single-Wall Nanotubes // Phys. Rev. Lett. 2007. V. 98, No. 14. P. 147402, 1 ? 4. Haggenmueller R., Gommans H. H., Rinzler A. G., Fischer J. E. Aligned single-wall carbon nanotubes in composites by melt processing methods // Chem. Phys. Lett. 2000. V. 330. P. 219 ? 225. Fischer D., P?tschke P., Br?nig H., Janke A. Investigation of the Orientation in Composite Fibers of Polycarbonate with Multiwalled Carbon Nanotubes by Raman Microscopy // Macromol. Symp. 2005. V. 230. P. 167 ? 172. Ajayan P. M., Stephan O., Colliex C., Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite // Science. 1994. V. 265. P. 1212 ? 1214. Wood J. R., Zhao Q., Wagner H. D. Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy // Compos. Part A. Appl. Sci. Manuf. 2001. V. 32. P. 391 ? 399. Shoji S., Suzuki H., Zaccaria R. et al. Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film // Phys. Rev. B. 2008. V. 77. P. 153407, 1 ? 4. Walters D. A., Casavant M. J., Qin X. C. et al. In-plane aligned membranes of carbon nanotubes // Chem. Phys. Lett. 2001. V. 338. P. 14 ? 20. Fischer J. E., Zhou W., Vavro J. et al. Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties // J. Appl. Phys. 2003. V. 93. P. 2157 ? 2163. Tian Y., Park J. G., Cheng Q. et al. The fabrication of singlewalled carbon nanotube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment // Nanotechnology. 2009. V. 20. No. 33. P. 335601, 1 ? 7. Kumar S., Kaur H., Kaur I. et al. Magnetic fieldguided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles // J. Mater. Sci. 2011. V. 47. P. 1489 ? 1496. Correa-Duarte M. A., Grzelczak M., Salgueiri?o-Maceira V. et al. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles // J. Phys. Chem. B. 2005. V. 109. P. 19060 ? 19063. Kord?s K., Mustonen T., T?th G. et al. Magnetic-Field Induced Efficient Alignment of Carbon Nanotubes in Aqueous Solutions // Chem. Mater. 2007. V. 19. P. 787 ? 791. Korneva G., Ye H., Gogotsi Y. et al. Carbon nanotubes loaded with magnetic particles // Nano Lett. 2005. No. 5. P. 879 ?884. Oliva-Avil?s A. I., Aviles F., Sosa V., Seidel G. Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields // Carbon. 2014. V. 69. P. 342 ? 354. Chen, Y., Shaw D. T., Guo L. Field emission of different oriented carbon nanotubes // Appl. Phys. Lett. 2000. V. 76. No. 17. P. 2469 ? 2471. Monti M., Natali M., Torre L., Kenny J. The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field // Carbon. 2012. V. 50. P. 2453 ? 2464.

Статью можно приобрести
в электронном виде!

PDF формат

500 руб

УДК 666.189.21
Тип статьи: Без рубрики
Оформить заявку

Ключевые слова

Для цитирования статьи

Красновский А. Н., Казаков И. А., Кищук П. С. Упрочнение стеклокомпозита многослойными углеродными нанотрубками, выровненными постоянным электрическим полем // Стекло и керамика. 2021. Т. 94, № 2. С. 3-8. УДК 666.189.21