Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1125
  • Pages: 3-08
  • Share:

Heading: Not-set

In this work we studied the influence of the laser exposure parameters and the etching solution type on the hollow channels length formed in silica glass by femtosecond laser-assisted backside wet etching. The pro-posed multi-pass method significantly increased the channel length up to 180 µm. Using the etching solu-tions, which effectively dissolve the defective layer of the formed channels, makes it possible to obtain deeper and wider hollow channels with high selectivity
T. O. Lipateva1, A. S. Lipatiev1, Ya. V. Kulakova1, S. V. Lotarev1, S. S. Fedotov1, I. V. Prusova2, V. N. Sigaev1 1Mendeleev University of Chemical Technology (Mendeleev University) (Moscow, Russia) 2Belarusian National Technical University (BNTU) (Minsk, Belarus)
1. Bischof D., Kahl M., Michler M. Laser-assisted etching of borosilicate glass in potassium hydroxide // Optical Materials Express. 2021. V. 11, Nо. 4. P. 1185 – 1195. 2. Gottmann J., Hermans M., Repiev N., Ortmann J. Se-lective laser-induced etching of 3D precision quartz glass components for microfluidic applications–up-scaling of complexity and speed // Micromachines. 2017. V. 8, Nо. 4. P. 110. 3. Liao Y., Xu J., Sun H., et al. Fabrication of microelec-trodes deeply embedded in LiNbO3 using a femtosecond laser // Applied surface science. 2008. V. 254, No. 21. P. 7018 – 7021. 4. Liu Z., Xu J., Lin, Z., et al. Fabrication of single-mode circular optofluidic waveguides in fused silica using femtosecond laser microfabrication // Optics & Laser Technology. 2021. V. 141. P. 107118. 5. Lv J., Hong B., Tan Y., et al. Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching // Photonics Research. 2020. V. 8, No. 3. P. 257 – 262. 6. Qi J., Li W., Chu W., et al. A microfluidic mixer of high throughput fabricated in glass using femtosecond laser micromachining combined with glass bonding // Micromachines. 2020. V. 11, No. 2. P. 213. 7. Qi J., Wang Z., Xu J., et al. Femtosecond laser induced selective etching in fused silica: optimization of the in-scription conditions with a high-repetition-rate laser source // Optics express. 2018. V. 26, No. 23 P. 29669 – 29678. 8. Beresna M., Gecevi?ius M., Lancry M., et al. Broadband anisotropy of femtosecond laser induced nanogratings in fused silica // Applied Physics Letters. 2013. V. 103, No. 13. P. 131903. 9. Lotarev S. V., Fedotov S. S., Kurina A. I., et al. Ultrafast laser-induced nanogratings in sodium germanate glasses // Optics letters. 2019. V. 44, No. 7. P. 1564 – 1567. 10. Richter S. Laser induced nanogratings beyond fused sili-ca-periodic nanostructures in borosilicate glasses and ULE™ // Optical Materials Express. 2013. V. 3, No. 8. P. 1161 – 1166. 11. Yu Y., Chen Y., Chen J., et al. Fabrication of microchannels by space-selective control of phase separation in glass // Optics letters. 2016. V. 41, No. 14. P. 3371 – 3374. 12. Shakhov A. M., Astafiev A. A., Nadtochenko V. A. Phys-icochemical mechanisms of nanostructuring of glass by femtosecond laser pulses with the use of selective etching // JETP Letters. 2019. V. 109, No. 5. P. 292 – 297. 13. Cao X. W., Chen Q. D., Fan H., et al. Liquid-assisted femtosecond laser precision-machining of silica // Nanomaterials. 2018. V. 8, No. 5. P. 287. 14. Fernandez T. T., Sakakura M., Eaton S. M., et al. Be-spoke photonic devices using ultrafast laser driven ion migration in glasses. // Progress in Materials Science. 2018. V. 94. P. 68 – 113. 15. Kim S., Kim J., Joung Y. H., et al. Optimization of selec-tive laser-induced etching (SLE) for fabrication of 3D glass microfluidic device with multi-layer micro channels. // Micro and Nano Systems Letters. 2019. V. 7, No. 1. P. 1 – 7. 16. Hasse K., Huber G., Kr?nkel C. Selective etching of fs-laser inscribed high aspect ratio microstructures in YAG // Optical Materials Express. 2019. V. 9, No. 9. P. 3627 – 3637. 17. Spierings G. Wet chemical etching of silicate glasses in hydrofluoric acid based solutions // Journal of Materials science. 1993. V. 28, No. 23. P. 6261 – 6273. 18. Ross C. A., MacLachlan D. G., Choudhury D., Thomson R. R. Optimisation of ultrafast laser assisted etching in fused silica // Optics express. 2018. V. 26, No. 19. P. 24343 – 24356. 19. Kwon K. K., Kim H., Kim T., Chu C. N. High Aspect ratio channel fabrication with near-infrared laser-induced backside wet etching // Journal of Materials Processing Technology. 2020. V. 278. P. 116505. 20. Niino H., Kawaguchi Y., Sato T., et al. Laser-induced backside wet etching of silica glass with ns-pulsed DPSS UV laser at the repetition rate of 40 kHz // Journal of Physics: Conference Series. IOP Publishing. 2007. V. 59, No. 1. P. 115. 21. Tsvetkov M. Y., Yusupov V. I., Minaev N. V., et al. Ef-fects of thermo-plasmonics on laser-induced backside wet etching of silicate glass // Laser Physics Letters. 2016. V. 13, No. 10. P. 106001. 22. B?hme R., Hirsch D., Zimmer K. Laser etching of trans-parent materials at a backside surface adsorbed layer // Applied surface science. 2006. V. 252, No. 13. P. 4763 – 4767. 23. Tsvetkov M. Y., Minaev N. V., Akovantseva A. A., et al. Thermoplasmonic laser-induced backside wet etching of sapphire // Quantum Electronics. 2019. V. 49, No. 2. P. 133. 24. Long J., Zhou C., et al. Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers // Optics & Laser Technology. 2019. V. 109. P. 61 – 70.

The article can be purchased
electronic!

PDF format

500 руб

UDK 666.1:666.266.6
Article type: Not-set
Make a request

Keywords

Use the reference below to cite the publication

Lipateva T. O., Lipatiev A. S., Lotarev S. V., Fedotov S. S., Kulakova Ya. V., Sigaev V. N. Control of Laser-Induced Backside Wet Etching of Silica Glass. Steklo i keramika. 2021:94(9):3-08. (in Russ). UDK 666.1:666.266.6