Steklo i Keramika (Glass and Ceramics). Monthly scientific, technical and industrial journal

 

ISSN 0131-9582 (Online)

  • Continuous numbering: 1142
  • Pages: 9-18
  • Share:

Heading: Not-set

The results of research on the development of compositions of ceramic masses for obtaining effective heat-insulating materials and products are presented. The materials were obtained by pressing using kaolin clays, which differ both in plasticity and in fire resistance. To create a porous structure of the material, a method was used to introduce a porous filler in the form of swollen hydromica developed according to the ferruginous hydrophlogopite type in an amount of 50 wt. %. The apparent density and mechanical strength were studied depending on the pressing pressure, shrinkage during firing. The use of expanded hydromica made it possible to obtain products with a density of up to 1000 kg/m3 while maintaining thermomechanical properties up to 1050 ?C.
Marina Kh. Rumi – PhD, Senior Researcher, Laboratory of heat-accumulating, heat-insulating materials and solar technologies, Institute of Materials Science, SPA “Physics-Sun”, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Ella M. Urazaeva – Junior Researcher, Laboratory of heat-accumulating, HEAT-INSULATING materials and solar technologies, Institute of Materials Science, SPA “Physics-Sun”, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Shahlo K. Irmatova – Junior Researcher,Laboratory of heat-accumulating, heat-insulating materials and solar technologies, Institute of Material Science, SPA “Physics-Sun”, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan. E-mail: shaхThis email address is being protected from spambots. You need JavaScript enabled to view it..
Shavkat R. Nurmatov – PhD, deputy of science, Institute of Materials Science, SPA "Physics-Sun", Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Mars A. Zufarov – Junior Researcher,Laboratory of heat-accumulating, heat-insulating materials and solar technologies, Institute of Material Science, SPA “Physics-Sun”, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Elvira P. Mansurova – Junior Researcher, Laboratory of heat-accumulating, heat-insulating materials and solar technologies, Institute of Material Science, SPA “Physics-Sun”, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Shavkat A. Fayziev – PhD, Senior Researcher, Laboratory of heat-accumulating, heat-insulating materials and solar technologies, Institute of Materials Science, SPA “Physics-Sun”, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Zhakhongir K. Ziyovaddinov – Junior Researcher, Laboratory of heat-accumulating, heat-insulating materials and solar technologies, Institute of Material Science, SPA “Physics-Sun”, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
1. Гузман Я. Некоторые принципы формирова-ния пористых керамических структур. Свойства и применение. Обзор // Стекло и керамика. 2003. № 9. C. 28 – 31.[Guzman Ya. Сertain principles of formation of porous ceramic structures. properties and applications (A Review) // Glass Ceram. 2003. V. 60, No. 9–10. P. 280 – 283.]
2. Chaouki Sadik, Abderrahman Albizane, Iz-Eddine El Amrani. Production of porous firebrick from mixtures of clay and recycled refractory waste with expanded perlite addition // J. Mater. Environ. Sci. 2013. No. 4(6). P. 981 – 986.
3. Aripina H., Lestaria L., Agusua L., et. al. Preparation of Porous Ceramic with Controllable Additive and Firing Temperature // Advanced Materials Research. 2011. V. 277. P. 151 – 158. DOI: 10.4028/www.scientific.net/AMR.277.15
4. Smith D. S., Alzina A., Bourret J., et al. Thermal conductivity of porous materials // Journal of Materials Research. 2013. V. 28, No. 17. P. 2260 – 2272. DOI: https://doi.org/10.1557/jmr.2013.179. URL: https://www. cambridge.org/core/journals/journal-of-materials-research/ issue/D7F1FF31D001ECB09F7EFCF7E4EEE7A0
5. Шмурадко В. Т., Пантелеенко Ф. И., Реут О. П. и др. Формирование состава, структуры и свойств теплоизоляционных огнетеплозащитных материалов на основе вермикулита для промышленной энергетики // Новые огнеупоры. 2012. № 8. С. 39 – 44.
6. Пелецкий В. Е., Шур Б. А. Экспериментальное исследование теплопроводности теплозащитных материалов на основе вспученного вермикулита // Новые огнеупоры. 2007. № 11. С. 41 – 43.
7. Суворов С. А., Скурихин В. В. Вермикулит – перспективный материал для производства высокотемпературных теплоизоляции // Новые огнеупоры. 2003. № 2. С. 44 – 52.
8. Jiaqi Sun, Yan Yang, Jannick Ingrin, Zhongping Wang, et. al. Impact of fluorine on the thermal stability of phlogopite // American Mineralogist .2022. V. 107, No. 5. P. 815 – 825. DOI: https:// doi.org/10.2138/am-2022-8051/
9. Khaidarov I. N., Ismailov R. I. Research of features and compositions of vermiculite for use as suspension fire retardant for textile materials // Technical science and innovation. 2020. No. 2. Article 9. Р. 64 – 69. URL: https://uzjournals.edu.uz/btstu/vol2020/iss2/9
10. Попов Е. Л., Ахмедов Х., Хабибуллаева Г. Р. Результаты технологических исследований двух проб вермикулитовой руды месторождения Тебинбулак // Горный вестник Узбекистана. 2010. № 4(43). С. 84 – 87. URL: http://gorniyvestnik.uz/assets/uploads/pdf/2010-oktyabr- dekabr.pdf
11. Руми М. Х., Уразаева Э. М., Нурматов Ш. Р. и др. Минералогические особенности вспучиваемых вермикулитовых руд // Стекло и керамика. 2022. Т. 25, № 9. С. 55 – 65.
12. Иванов М. А., Пак В. И., Наливайко А. Ю. и др. Перспективы использования российского высоко-кремнистого алюмосодержащего сырья в глиноземном производстве // Изв. Томского политехнического университета. Инжиниринг георесурсов. 2019. Т. 330, № 3. С. 93 – 102.
13. Bergaya F., Dion P., Alcover J. F., et. al. TEM study of kaolinite thermal decomposition by controlled-rate thermal analysis // Journal of Materials Science. 1996. V. 31, No. 19. P. 5069 – 5075.
14. Дриц В. А., Коссовская А. Г. Глинистые минералы: слюды, хлориты. М.: Наука, 1991. 174 c. (Тр. ГИН. Вып. 465).
15. Lecomte G. L., Bonnet J. P., Blanchart P. A Study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1100 °C // Journal of Materials Science. 2007. V. 42, No. 20. P. 8745 – 8752. DOI: 10.1007/s10853-006-0192-7.

The article can be purchased
electronic!

PDF format

500 руб

DOI: 10.14489/glc.2023.02.pp.009-018
Article type: Research Article
Make a request

Keywords

Use the reference below to cite the publication

Rumi M. K., Urazaeva E. M., Irmatova S. K., Nurmatov Sh. R., Zufarov M. A., Mansurova E. P., Faiziev Sh. A., Ziyovaddinov Zh. K. Sintering characteristics and thermal properties of porous ceramics based on hydrophlogopite and refractory clays. Steklo i keramika. 2023:96(2):09-18. (in Russ). DOI: 10.14489/glc.2023.02.pp.009-018