Приведены результаты исследований по разработке составов керамических масс для получения эффективных теплоизоляционных материалов и изделий. Материалы получали прессованием с использованием каолиновых глин, отличающихся как по пластичности, так и по огнеупорности. Для создания пористой структуры материала применяли способ введения пористого заполнителя в виде вспученной гидрослюды, развитой по железистому гидро¬флогопитовому типу, в количестве 50 мас. %. Кажущуюся плотность и механическую прочность исследовали в зависимости от давления прессования, усадки при обжиге. Использование вспученной гидрослюды позволило получить изделия плотностью до 1000 кг/м3 с сохранением термомеханических свойств до 1050 ?С.
Марина Христофоровна Руми – канд. хим. наук, старший научный сотрудник, лаборатория теплоаккумулирующих, теплоизоляционных материалов и гелиотехнологий, Институт материаловедения НПО «Физика-Солнце» АН Республики, Узбекистан, Ташкент, Узбекистан. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Элла Муратовна Уразаева – младший научный сотрудник, лаборатория теплоаккумулирующих, теплоизоляционных материалов и гелиотехнологий, Институт материаловедения НПО «Физика-Солнце» АН Республики Узбекистан, Ташкент, Узбекистан. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Шахло Камоловна Ирматова – младший научный сотрудник, лаборатория теплоаккумулирующих, теплоизоляционных материалов и гелиотехнологий, Институт материаловедения НПО «Физика-Солнце» АН Республики Узбекистан, Ташкент, Узбекистан. E-mail: shaхАдрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Шавкат Расулматович Нурматов – канд. техн. наук, заместитель директора по науке, Институт материаловедения НПО «Физика-Солнце» АН Республики Узбекистан, Ташкент, Узбекистан. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Марс Ахмедович Зуфаров – младший научный сотрудник, лаборатория теплоаккумулирующих, теплоизоляционных материалов и гелиотехнологий, Институт материаловедения НПО «Физика-Солнце» АН Республики Узбекистан, Ташкент, Узбекистан. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Эльвира Пулатовна Мансурова – младший научный сотрудник, лаборатория теплоаккумулирующих, теплоизоляционных материалов и гелиотехнологий, Институт материаловедения НПО «Физика-Солнце» АН Республики Узбекистан, Ташкент, Узбекистан. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Шавкат Адылович Файзиев – канд. техн. наук, старший научный сотрудник, лаборатория теплоаккумулирующих, тепло-изоляционных материалов и гелиотехнологий, Институт материаловедения НПО «Физика-Солнце» АН Республики Узбекистан, Ташкент, Узбекистан. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Жахонгир Косимович Зиёваддинов – младший научный сотрудник, лаборатория теплоаккумулирующих, теплоизоляционных материалов и гелиотехнологий, Институт материаловедения НПО «Физика-Солнце» АН Республики Узбекистан, Ташкент, Узбекистан. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
1. Гузман Я. Некоторые принципы формирова-ния пористых керамических структур. Свойства и применение. Обзор // Стекло и керамика. 2003. № 9. C. 28 – 31.[Guzman Ya. Сertain principles of formation of porous ceramic structures. properties and applications (A Review) // Glass Ceram. 2003. V. 60, No. 9–10. P. 280 – 283.]
2. Chaouki Sadik, Abderrahman Albizane, Iz-Eddine El Amrani. Production of porous firebrick from mixtures of clay and recycled refractory waste with expanded perlite addition // J. Mater. Environ. Sci. 2013. No. 4(6). P. 981 – 986.
3. Aripina H., Lestaria L., Agusua L., et. al. Preparation of Porous Ceramic with Controllable Additive and Firing Temperature // Advanced Materials Research. 2011. V. 277. P. 151 – 158. DOI: 10.4028/www.scientific.net/AMR.277.15
4. Smith D. S., Alzina A., Bourret J., et al. Thermal conductivity of porous materials // Journal of Materials Research. 2013. V. 28, No. 17. P. 2260 – 2272. DOI: https://doi.org/10.1557/jmr.2013.179. URL: https://www. cambridge.org/core/journals/journal-of-materials-research/ issue/D7F1FF31D001ECB09F7EFCF7E4EEE7A0
5. Шмурадко В. Т., Пантелеенко Ф. И., Реут О. П. и др. Формирование состава, структуры и свойств теплоизоляционных огнетеплозащитных материалов на основе вермикулита для промышленной энергетики // Новые огнеупоры. 2012. № 8. С. 39 – 44.
6. Пелецкий В. Е., Шур Б. А. Экспериментальное исследование теплопроводности теплозащитных материалов на основе вспученного вермикулита // Новые огнеупоры. 2007. № 11. С. 41 – 43.
7. Суворов С. А., Скурихин В. В. Вермикулит – перспективный материал для производства высокотемпературных теплоизоляции // Новые огнеупоры. 2003. № 2. С. 44 – 52.
8. Jiaqi Sun, Yan Yang, Jannick Ingrin, Zhongping Wang, et. al. Impact of fluorine on the thermal stability of phlogopite // American Mineralogist .2022. V. 107, No. 5. P. 815 – 825. DOI: https:// doi.org/10.2138/am-2022-8051/
9. Khaidarov I. N., Ismailov R. I. Research of features and compositions of vermiculite for use as suspension fire retardant for textile materials // Technical science and innovation. 2020. No. 2. Article 9. Р. 64 – 69. URL: https://uzjournals.edu.uz/btstu/vol2020/iss2/9
10. Попов Е. Л., Ахмедов Х., Хабибуллаева Г. Р. Результаты технологических исследований двух проб вермикулитовой руды месторождения Тебинбулак // Горный вестник Узбекистана. 2010. № 4(43). С. 84 – 87. URL: http://gorniyvestnik.uz/assets/uploads/pdf/2010-oktyabr- dekabr.pdf
11. Руми М. Х., Уразаева Э. М., Нурматов Ш. Р. и др. Минералогические особенности вспучиваемых вермикулитовых руд // Стекло и керамика. 2022. Т. 25, № 9. С. 55 – 65.
12. Иванов М. А., Пак В. И., Наливайко А. Ю. и др. Перспективы использования российского высоко-кремнистого алюмосодержащего сырья в глиноземном производстве // Изв. Томского политехнического университета. Инжиниринг георесурсов. 2019. Т. 330, № 3. С. 93 – 102.
13. Bergaya F., Dion P., Alcover J. F., et. al. TEM study of kaolinite thermal decomposition by controlled-rate thermal analysis // Journal of Materials Science. 1996. V. 31, No. 19. P. 5069 – 5075.
14. Дриц В. А., Коссовская А. Г. Глинистые минералы: слюды, хлориты. М.: Наука, 1991. 174 c. (Тр. ГИН. Вып. 465).
15. Lecomte G. L., Bonnet J. P., Blanchart P. A Study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1100 °C // Journal of Materials Science. 2007. V. 42, No. 20. P. 8745 – 8752. DOI: 10.1007/s10853-006-0192-7.
Статью можно приобрести
в электронном виде!
PDF формат
700 руб
DOI: 10.14489/glc.2023.02.pp.009-018
Тип статьи:
Научная статья
Оформить заявку