Phase and elemental analysis were performed for amorphous nanosized thin films of (InSe)20(GaSe)80 and (InSe)50(GaSe)50 compositions, and surface morphology studies were conducted. Optical transmission studies of thin films allowed us to establish that absorption corresponds to indirect allowed transitions for these compositions in accordance with the Tauc model, while the values of the optical band gap are Eg = 1.26 eV for (InSe)20(GaSe)80 and 1.07 eV for (InSe)50(GaSe)50 thin films.
Sergey A. Kozyukhin – Dr. Sc. (Phys. Chemistry), Professor, chief researcher, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Herzen State Pedagogical University, St. Petersburg, Russia
Dmitry V. Pepelyaev – junior researcher, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
Mariia A. Teplonogova – junior researcher, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
1. Yang Z., Jie W., Mak C. H., et al. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse // ACS Nano. 2017. V. 11. P. 4225 – 4236.
2. Lei S., Ge L., Najmaei S., et al. Evolutionof the electronic band structure and efficient photo-detection in atomic layers of InSe // ACS Nano. 2014. V. 8. P. 1263 – 1272.
3. Susarla S., Kutana A., Hachtel J. A., et al. Quaternary 2D transition metal dichalcogenides (TMDS) with tunable bandgap // Adv. Mater. 2017. V. 29. P. 1702457.
4. Zhou J., Shi J., Zeng Q., et al. InSe monolayer: Synthesis, structure and ultra-high second-harmonic generation // 2D Mater. 2018. V. 5. P. 025019.
5. Zhou X., Cheng J., Zhou Y., et al. Strong second-harmonic generation in atomic layered GaSe // J. Am. Chem. Soc. 2015. V. 137. P. 7994 – 7997.
6. Balakrishnan N., Kudrynskyi Z. R., Smith E. F., et al. Engineering p – n junctions and bandgap tuning of InSe nanolayers by controlled oxidation // 2D Mater. 2017. V. 4. P. 025043.
7. Li Y., Wang T., Wu M., et al. Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering // 2D Mater. 2018. V. 5. P. 021002.
8. Deiseroth H. J., Muller D., Hahn H. Strukturuntersuchungen an InGaSe2 und InGaTe2 // Z. Anorg. Allg. Chem. 1985. V. 525, No. 6. P. 163 – 172.
9. Mobarak M., Berger H., Lorusso G. F., et al. Тhe growth and properties of single crystals of a ternary chalcogenide semiconductor // J. Phys. D: Appl. Phys. 1997. V. 30. P. 2509.
10. Mobarak M. Electrical and thermoelectric power measurements of GaInSe2 single crystals // Physica B. 2009. V. 404, No. 8 – 11. P. 1259.
11. Szymanski D., Barrick J. C., Giessen B. C. The crystal structure of a metastable binary phase related to ?-Ga: ??-Ga(In) // Journal of Solid State Chemistry. 1979. V. 30, No. 1. P. 55 – 59.
12. Qasrawi A. F. Refractive index, band gap and oscillator parameters of amorphous GaSe thin films // Crystal Research and Technology: Journal of Experimental and Industrial Crystallography. 2005. V. 40, No. 6. P. 610 – 614.
13. Ohyama M., Fujita Y. Electrical and optical properties in sputtered GaSe thin films // Surface and Coatings Technology. 2003. V. 169. P. 620 – 623.
14. Di Giulio M, Micocci G., Siciliano P., et al. Photoelectronic and optical properties of amorphous gallium?selenide thin films // Journal of applied physics. 1987. V. 62, No. 10. P. 4231 – 4235.
15.Thmilsevan M., Premanzeer K., Mangalaraj D., et al. Influence of density of states on optical properties of GaSe thin film // Crystal Research and Technology: Journal of Experimental and Industrial Crystallography. 2004. V. 39, No. 2. P. 137 – 142.
16. Mondal B. K., Mostaque S. K., Islam M. A., et al. Stress-induced phase-alteration in solution processed indium selenide thin films during annealing // RSC advances. 2021. V. 11, No. 23. P. 13751 – 13762.
17. Lafi O. A., Imran M. M. A., Ma’rouf K. A. Chemical bond approach to glass transition temperature and crystallization activation energy in Se90In10?xSnx (2 ? x ? 8) semiconducting glasses // Materials Chemistry and Physics. 2008. V. 108, No. 1. P. 109 – 114.
18. Гуревич Л. В., Караченцев Г. В., Кондратьев В. Н. и др. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону. М.: Наука, 1974. С. 351.
19. Burley R. A. The infrared spectrum and structure of selenium dioxide // Mat. Res. Bull. 1968. V. 3. P. 735 – 744.
20. Tauc J., Grigorovic R., Vancu A. Optical properties and electronic structure of amorphous germanium // Physica status solidi (b). 1966. V. 15, No. 2. P. 627 – 637.
21. Aspnes D. E., Studna A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev // Physical review B. 1983. V. 27, No. 2. P. 985.
22. Mart?nez F. L., Del Prado A., Martil I., et al. Thermally induced changes in the optical properties of SiN x: H films deposited by the electron cyclotron resonance plasma method // Journal of applied physics. 1999. V. 86, No. 4. P. 2055 – 2061.
23. Sakr G. B. Optical and electrical properties of GaSe thin films // Materials Science and Engineering B. 2007. V. 138, No. 1. P. 1 – 6.
24. El-Nahass M., Saleh A. B. A., Darwish A. A. A., et al. Optical properties of nanostructured InSe thin films // Optics Communications. 2012. V.285, No. 15. P. 1221 – 1224.
The article can be purchased
electronic!
PDF format
700
DOI: 10.14489/glc.2025.04.pp.022-029
Article type:
Research Article
Make a request