Ежемесячный научно-технический и производственный журнал

ISSN 0131-9582

  • Сквозной номер выпуска: 1126
  • Страницы статьи: 29-36
  • Поделиться:

Рубрика: Без рубрики

Проведено исследование влияния добавки aлюмосиликатных ценосфер (АСЦ) двуx фракций на структуру и свойства керамики с отходами производства минеральной ваты (МВ). Определено влияние различного количества (от 10 до 30 %) и различных фракций (0,125 – 0,250 мм) и менее 0,125 мм АСЦ на физические и механические свойства керамических образцов после обжига при температурах 1000 – 1080 °C. Установлено, что совместное использование МВ в качестве отощающей добавки и АСЦ двух различных фракций позволяет получить прочную легковесную керамику с низкой усадкой и высокой пористостью
Д-р техн. наук И. ПРАНСЦКЕВИЧЕНЕ (e-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.), д-р техн. наук И. ПУНДИЕНЕ (e-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.) Институт строительных материалов строительного факультета Вильнюсского технического университета им. Гедиминаса (VGTU) (Вильнюс, Литва)
1. Lu J., Zhang Z., Li Y., Liu Z. Effect of Alumina Source on the Densification, Phase Evolution, and Strengthening of Sintered Mullite-Based Ceramics from Milled Coal Fly Ash // Construction and Building Materials. 2019. V. 229. P. 116851. 2. Ranjbar N., Kuenzel C. Cenospheres: a review // Fuel. 2017. V. 207. P. 1 – 12. 3. Kolay P. K., Bhusal S. Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization // Fuel. 2004. V. 117. P. 118 – 124. 4. Зырянов В. В. Зола уноса. Texнoгeннoe сырье. М.: Маска, 2009. 320 с. 5. Sear L. K. A. The Properties and Use of Coal Fly Ash. London: Thomas Telford Ltd, 2001. 220 р. 6. Drozhzhin V. S., Pikulin I. V., Kuvaev M. D., Mi Ya. Technical Monitoring of Microspheres from Fly Ashes of Electric Power Stations // World of Coal Ash Conference. Lexington, Kentucky, USA, 11 – 15 April, 2005. Lexing-ton, 2005. P. 113 – 114. 7. Agrawal U. S., Wanjari S. P. Physiochemical and Engi-neering Characteristics of Cenosphere and Its Application as a Lightweight Construction Material: A Review // Materials Today: Proceedings. 2017. V. 4, No. 9. P. 9797 – 9802. 8. Саградян А. А. Изучение фазового состава новообра-зований в системе зольные микросферы – цементная матрица // Вестник Тюменского государственного университета. 2012. № 5. C. 102 – 106. 9. Fenelonov V. B., Mel’gunov M. S., Parmon V. N. The Properties of Cenospheres and the Mechanism of Their Formation During High-Temperature Coal Combustion at Thermal Power Plans // KONA Powder and Particle Journal. 2010. V. 28. P. 189 – 208. 10. Barbare N., Shukla A., Bose A. Uptake and Loss of Wa-ter in a Cenosphere-Concrete Composite Material // Ce-ment and Concrete Research. 2003. V. 33, No. 10. P. 1681 – 1686. 11. Bickley J. A., Ryell J., Rogers C., Hooton R. D. Some Characteristics of High-Strength Structural Concrete. Part 2 // Canadian Journal of Civil Engineering. 1994. V. 21, No. 6. P. 1084 – 1087. 12. Tiwari V., Shukla A., Bose A. Acoustic Properties of Cenosphere Reinforced Cement and Asphalt Concrete // Applied Acoustics. 2004. V. 65, No 3. P. 263 – 275. 13. Wang C., Liu J., Du H., Guo A. Effect of Fly Ash Cenospheres on the Microstructure and Properties of Sili-ca-Based Composites // Ceramics International. 2012. V. 38, No. 5. P. 4395 – 4400. 14. Mondal D. P., Das S., Ramakrishnan N., Bhasker K. U. Cenosphere Filled Aluminum Syntactic Foam Made through Stir-Casting Technique // Composites. Part A: Applied Science and Manufacturing. 2009. V. 40, No. 3. P. 279 – 288. 15. Brooks A. L., Shen Z., Zhou H. Development of a High-Temperature Inorganic Synthetic Foam with Recycled Fly-Ash Cenospheres for Thermal Insulation Brick Man-ufacturing // Journal of Cleaner Production. 2020. V. 246. P. 118748. 16. Ozcivici E., Singh R. P. Fabrication and Characterization of Ceramic Foams Based on Silicon Carbide Matrix and Hollow Alumino-Silicate Spheres // Journal of the Amer-ican Ceramic Society. 2005. V. 88, No. 12. P. 3338 – 3345. 17. Arizmendi-Morquecho A., Ch?vez-Valdez A., Alvarez-Quintana J. High Temperature Thermal Barrier Coatings from Recycled Fly Ash Cenospheres // Applied Thermal Engineering. 2012. V. 48. P. 117 – 121. 18. Wu G. H., Dou Z. Y., Sun D. L., et al. Compression Be-haviors of Cenosphere-Pure Aluminum Syntactic Foams // Scripta Materialia. 2007. V. 56, No. 3. P. 221 – 224. 19. Mukhopadhyay, T. K., Ghosh S., Ghosh J., et al. Effect of Fly Ash on the Physico-Chemical and Mechanical Properties of a Porcelain Composition // Ceramics Inter-national. 2010. V. 36, No. 3. P. 1055 – 1062. 20. Lin K. L. Feasibility Study of Using Brick Made from Municipal Solid Waste Incinerator Fly Ash Slag // Journal of Hazardous Materials. 2006. V. 137, No. 3. P. 1810 – 1816. 21. Castellanos A. G., Mawson H., Burke V., Prabhakar P. Fly-Ash Cenosphere/Clay Blended Composites for Im-pact Resistant Tiles // Construction and Building Materi-als. 2017. V. 156. P. 307 – 313. 22. Lingling X., Wei G., Tao W., Nanru Y. Study on Fired Bricks with Replacing Clay by Fly Ash in High Volume Ratio // Construction and Building Materials. 2005. V. 19, No. 3. P. 243 – 247. 23. Cultrone G., Sebasti?n E. Fly Ash Addition in Clayey Materials to Improve the Quality of Solid Bricks // Con-struction and Building Materials. 2009. V. 23, No. 2. P. 1178 – 1184. 24. Majkrzak G., Watson J. P., Bryant M. M., Clayton K. Effect of Cenospheres on Flyash Brick Properties // World of Coal Ash Conference, Covington, Kentuck, USA, 2007. 25. Liu H., Burkett W. Haynes K. Improving freezing and thawing properties of fly ash bricks // Proceedings of the World of coal ash, 11 – 15 April 2005, Lexington, Ken-tucky, USA. Lexington, 2005. 26. Olgun A., Erdogan Y., Ayhan Y., Zeybek B. Develop-ment of Ceramic Tiles from Coal Fly Ash and Tincal Ore Waste // Ceramics International. 2005. V. 31, No. 1. P. 153 – 158. 27. Прансцкевичене И., Пундиене И., Кременсас А. Влияние нефелин-сиенита и отходов производства минеральной ваты на эксплуатационные свойства ке-рамики // Стекло и керамика. 2121. № 2. С. 20 – 26. [Pranckevi?ien? J., Pundien? I., Kremensas A. Influence of Nepheline-Syenite and Mineral Wool Production Waste on Operational Properties of Ceramics // Glass Сeram. 2021. V. 78, Nо. 1–2. P. 57 – 62.]

Статью можно приобрести
в электронном виде!

PDF формат

500 руб

УДК 666.3
Тип статьи: Без рубрики
Оформить заявку

Ключевые слова

Для цитирования статьи

Прансцкевичене И., Пундиене И. Легковесная керамика с добавкой отходов производства минеральной ваты и aлюмосиликатных ценосфер различных фракций // Стекло и керамика. 2021. Т. 94, № 10. С. 29-36. УДК 666.3