Ежемесячный научно-технический и производственный журнал

ISSN 0131-9582

  • Сквозной номер выпуска: 1139
  • Страницы статьи: 52-62
  • Поделиться:

Рубрика: Без рубрики

Исследовано влияние концентрации (от 18 до 6 %) раствора щелочного активатора (РА) на вязкость, физические и механические свойства геополимерных композитов на основе шамота с добавками отходов производства пеностекла, многослойных углеродных нанотрубок (MУН) и воздухововлекающей добавки (ВД) после термообработки при различных температурах. Термообработка при 1000 °С снижает плотность образцов с ВД от 1600 до 1240 кг/м3, прочность от 20,0 до 2,6 МПа и усадку от 5,9 до 1,5 %. Совместное применение ВД и МУН позволяет до 7,9 – 10,3 % повысить прочность и до 16,0 – 8,2 % снизить усадку образцов.
Ина Пундиене – д-р техн. наук, ведущ. науч. сотрудник, Институт строительных материалов строительного факультета Вильнюсского технического университета им. Гедиминаса (VGTU), Вильнюс, Литва. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Иоланта Пранцкевичене – д-р техн. наук, ст. науч. сотрудник, Институт строительных материалов строительного факультета Вильнюсского технического университета им. Гедиминаса (VGTU), Вильнюс, Литва. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Модестас Клигис – д-р техн. наук, ст. науч. сотрудник, Институт строительных материалов строительного факультета Вильнюсского технического университета им. Гедиминаса (VGTU), Вильнюс, Литва. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
1. Bernal S. A., Rodr?guez E. D., Kirchheim A. P., Provis J. L. Management and valorisation of wastes through use in producing alkali-activated cement materials // Journal of Chemical Technology and Biotechnology. 2016. V. 91, No. 9. P. 2365 – 2388.
2. Amran M., Debbarma S., Ozbakkaloglu T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties // Construction and Building Materials. 2021. V. 270. P. 121857.
3. Abdulkareem O. A., Abdullah M. M. A. B., Hussin K., et al. Mechanical and Microstructural Evaluations of Lightweight Aggregate Geopolymer Concrete before and after Exposed to Elevated Temperatures // Materials. 2013. V. 6, No. 10. P. 4450 – 4461.
4. Villaquir?n-Caicedo M. A., Mej?a De Guti?rrez R., Gallego N. C. A Novel MK-based Geopolymer Composite Activated with Rice Husk Ash and KOH: Performance at High Temperature // Materiales de Construcci?n. 2017. V. 67, No. 325. P. 117.
5. Lu C., Zhang Z., Shi C., et al. Rheology of alkali-activated materials: A review // Cement and Concrete Composites. 2021. V. 121, No. 1940. P. 104061.
6. Zhang Z., Zhu Y., Yang T., et al. Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag // Journal of Cleaner Production. 2017. V. 141. P. 463 – 471.
7. Provis J. L., Palomo A., Shi C. Advances in under-standing alkali-activated materials // Cement and Concrete Research. 2015. V. 78. P. 110 – 125.
8. Xiang J., Liu L., Cui X., et al. Effect of limestone on rheological, shrinkage and mechanical properties of alkali – Activated slag/fly ash grouting materials // Construction and Building Materials. 2018. V. 191. P. 1285 – 1292.
9. Kashani A., Provis J. L., Qiao G. G., Van Deventer J. S. J. The interrelationship between surface chemistry and rheology in alkali activated slag paste // Construction and Building Materials. 2014. V. 65. P. 583 – 591.
10. N?gele E., Schneider U. The zeta-potential of blast furnace slag and fly ash // Cement and Concrete Research. 1989. V. 19. P. 811 – 820.
11. Lopez Gonzalez P. L., Novais R. M., Labrincha J. A., et al. Modifications of basic-oxygen-furnace slag microstructure and their effect on the rheology and the strength of alkali-activated binders // Cement and Concrete Composites. 2019. V. 97. P. 143 – 153.
12. Williamson T., Juenger M. C. G. The role of activating solution concentration on alkali-silica reaction in alkali-activated fly ash concrete // Cement and Concrete Research. 2016. V. 83. P. 124 – 130.
13. Rakngan W., Williamson T., Ferron R. D., et al. Controlling workability in alkali-activated Class C fly ash // Construction and Building Materials. 2018. V. 183. P. 226 – 233.
14. Xiang J., Liu L., Cui X., et al. Effect of Fuller-fine sand on rheological, drying shrinkage, and microstructural properties of metakaolin-based geopolymer grouting materials // Cement and Concrete Composites. 2019. V. 104. P. 103381.
15. Aboulayt A., Jaafri R., Samouh H., et al. Stability of a new geopolymer grout: Rheological and mechanical performances of metakaolin-fly ash binary mixtures // Construction and Building Materials. 2018. V. 181. P. 420 – 436.
16. Kuenzel C., Li L., Vandeperre L., et al. Influence of sand on the mechanical properties of metakaolin geo-polymers // Construction and Building Materials. 2014. V. 66. P. 442 – 446.
17. Hasnaoui A., Ghorbel E., Wardeh G. Optimization approach of granulated blast furnace slag and metakaolin based geopolymer mortars // Construction and Building Materials. 2019. V. 198. P. 10 – 26.
18. Shi C. Characteristics and cementitious properties of ladle slag fines from steel production // Cement and Concrete Research. 2002. V. 32. P. 459 – 462.
19. Roy D. M., Jiang W., Silsbee M. R. Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties // Cement and Concrete Research. 2000. V. 30. P. 1879 – 1884.
20. Douglas E., Bilodeau A., Malhotra V. M. Proper-ties and Durability of Alkali-Activated Slag Concrete // Materials Journal. 1992. V. 89. P. 509 – 516.
21. Duxson P., Provis J. L., Lukey G. C., van Deven-ter J. S. J. The role of inorganic polymer technology in the development of green concrete // Cement and Concrete Research. 2007. V. 37. P. 1590 – 1597.
22. Abdel-Aziem A., Ewais E., El-Gamal S., Mea-wad A. Possibility of Using Material Activated with Alkali as a Binder for Refractory Concretes // Refractories and Industrial Ceramics. 2021. V. 62. P. 404 – 410.
23. Wu Y., Lu B., Bai T., et al. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges // Construction and Building Materials. 2019. V. 224. P. 930 – 949.
24. Selim F. A., Amin M. S., Ramadan M., Hazem M. M. Effect of elevated temperature and cooling regimes on the compressive strength, microstructure and radiation attenuation of fly ash-cement composites modified with miscellaneous nanoparticles // Construction and Building Materials. 2020. V. 258. P. 119648.
25. Yuan J., He P., Jia D., et al. In situ processing of MWCNTs/leucite composites through geopolymer precursor // Journal of the European Ceramic Society. 2017. V. 37. P. 2219 – 2226.
26. Davidovits J. Geopolymers: Ceramic-like inorganic polymers // International Journal of Applied Ceramic Technology. 2017. V. 8, No. 3. P. 335 – 350.
27. Goyal K., Singh H., Bhatia R. Experimental investigations of carbon nanotubes reinforcement on properties of ceramic-based composite coating // Journal of the Australian Ceramic Society. 2019. V. 55. P. 315 – 322.
28. Bajare D., Vitola L., Dembovska L., Bumanis G. Waste Stream Porous Alkali Activated Materials for High Temperature Application // Frontiers in Materials. 2019. V. 6. P. 1 – 13.
29. Bocullo V., Vitola L., Vaiciukyniene D., et al. The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash // Materials Chemistry and Physics. 2021. V. 258. P. 123846.
30. Dembovska L., Bumanis G., Vitola L., Bajare D. Influence of fillers on the alkali activated chamotte // IOP Conference Series: Materials Science and Engineering. 2017. V. 251, No. 1. P. 12009.
31. Bakharev T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing // Cement and Concrete Research. 2006. V. 36. P. 1134 – 1147.
32. Lyon R. E., Balaguru P. N., Foden A., et al. Fire-resistant Aluminosilicate Composites // Fire and Materials. 1997. V. 21. P. 67 – 73.
33. ?eputyt?-Jucik? J., Kligys M., Sinica M. The effects of modifying additives and chemical admixtures on the properties of porous fresh and hardened cement paste // Construction and Building Materials. 2016. V. 127. P. 679 – 691.
34. Tsaousi G. M., Douni I., Taxiarchou M., et al. Development of foamed Inorganic Polymeric Materials based on Perlite // IOP Conference Series: Materials Science and Engineering. 2016. V. 123, No. 1. P. 12062.
35. Korat L., Ducman V., Legat A., Mirti? B. Characterisation of the pore-forming process in lightweight aggregate based on silica sludge by means of X-ray micro-tomography (micro-CT) and mercury intrusion porosimetry (MIP) // Ceramics International. 2013. V. 39, No. 6. P. 6997 – 7005.
36. Henon J., Alzina A., Absi J., et al. Porosity control of cold consolidated geomaterial foam: Temperature effect // Ceramics International. 2012. V. 38, No. 1. P. 77 – 84.
37. Huiskes D. M. A., Keulen A., Yu Q. L., Brouwers H. J. H. Design and performance evaluation of ultra-lightweight geopolymer concrete // Materials and Design. 2016. V. 89. P. 516 – 526.
38. Pimraksa K., Chindaprasirt P., Rungchet A., et al. Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios // Materials Science and Engineering: A. 2011. V. 528. P. 6616 – 6623.
39. Posi P., Teerachanwit C., Tanutong C., et al. Light-weight geopolymer concrete containing aggregate from recycle lightweight block // Materials and Design. 2013. V. 52. P. 580 – 586.
40. Novais R. M., Buruberri L. H., Seabra M. P., et al. Novel porous fly ash-containing geopolymers for pH buffering applications // Journal of Cleaner Production. 2016. V. 124. P. 395 – 404.
41. Bernal S. A., Rodr?guez E. D., Mej?a De Guti?r-rez R., et al. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends // Journal of Materials Science. 2011. V. 46, No. 16. P. 5477 – 5486.
42. Lin T. S., Jia D. C., He P. G., Wang M. R. Thermo-mechanical and Microstructural Characterization of Geopolymers with ?-Al2O3 Particle Filler // International Journal of Thermophysics. 2009. V. 30, Articale No. 1568. P. 1568 – 1577.
43. Bell J. L., Driemeyer P. E., Kriven W. M. Formation of Ceramics from Metakaolin-Based Geopolymers. Part II. K-Based Geopolymer // Journal of the American Ceramic Society. 2009. V. 92, No. 3. P. 607 – 615.
44. V?squez J., Gonz?lez M., Vergara P., et al. Influence of conventional and functionalized carbon nanotubes in hybrid alkaline pastes with fly ash that contain high amounts of SO4 // Construction and Building Materials. 2021. V. 286. P. 122950.
45. Liew K. M., Kai M. F., Zhang L. W. Carbon nanotube reinforced cementitious composites: An overview // Composites. Part A. Applied Science and Manufacturing. 2016. V. 91. P. 301 – 323.
46. Shi T., Li Z., Guo J., et al. Research progress on CNTs/CNFs-modified cement-based composites – A review // Construction and Building Materials. 2019. V. 202. P. 290 – 307.
47. Su Z., Hou W., Sun Z. Recent advances in carbon nanotube-geopolymer composite // Construction and Building Materials. 2020. V. 252. P. 118940.
48. Gorzela?czyk T., Ho?a J. Pore structure of self-compacting concretes made using different super-plasticizers // Archives of Civil and Mechanical Engineering. 2011. V. 11. P. 611 – 621.
49. Plank J., Hirsch C. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption // Cement and Concrete Research. 2007. V. 37. P. 537 – 542.
50. Yakovlev G., Pervushin G., Maeva I., et al. Modification of Construction Materials with Multi-Walled Carbon Nanotubes // Procedia Engineering. 2013. V. 57. P. 407 – 413.
51. Пундиене И., Пранцкевичене И., Зу Ч. Влияние молярности и температуры раствора щелочного активатора на реологические свойства и формирование структуры щелочно-активированных огнеупорных материалов // Стекло и керамика. 2020. Т. 93, № 2. С. 18 – 23.[Pundiene I., Pranckeviciene I., Zhu C. Effect of Molarity and Temperature of Alkaline Activator Solution on the Rheological Properties and Structure Formation of Alkali-Activated Refractory Materials // Glass Ceram. 2020. V. 77, No. 1-2. P. 51 – 56.]
52. Дембовска Л., Пундиене И., Баяре Д., Буманис Г. Влияние отношения SiO2/Al2O3 на структуру, свойства и термическую стойкость геополимерных огнеупорных материалов // Стекло и керамика. 2018. Т. 91, № 3. С. 34 – 40.[Dembovska L., Pundiene I., Bajare D., Bumanis G. Effect of the Ratio SiO2/Al2O3 on the Structure, Properties, and Thermal Stability of Geopolymer Refractory Materials // Glass Ceram. 2018. V. 75, No. 3-4. P. 112 – 117.]
53. Ling G., Shui Z., Sun T., et al. Rheological Behavior and Microstructure Characteristics of SCC Incorporating Metakaolin and Silica Fume // Materials. 2018. V. 11. P. 2576.
54. Pouhet R., Cyr M., Bucher R. Influence of the initial water content in flash calcined metakaolin-based geopolymer // Construction and Building Materials. 2019. V. 201. P. 421 – 429.
55. Zhang D. W., Wang D. M., Liu Z., Xie F. Z. Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content // Construction and Building Materials. 2018. V. 187. P. 674 – 680.
56. Zhang Z., Provis J. L., Reid A., Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete // Cement and Concrete Composites. 2015. V. 62. P. 97 – 105.
57. Zhang Z., Wang H., Provis J. L., et al. Quanti-tative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide // Thermochimica Acta. 2012. V. 539. P. 23 – 33.
58. Sadik C., El Amrani I. E., Albizane A. Recent advances in silica-alumina refractory: A review // Journal of Asian Ceramic Societies. 2018. V. 2, No. 2. P. 83 – 96.
59. Li W., Zhang Y., Zhou N., et al. Research on the characterization of a porcelainised material fabricated by adding a small amount of anorthite chamotte // Ceramics International. 2017. V. 43, No. 15. P. 12402 – 12407.
60. Djangang C. N., Elimbi A., Melo U. C., et al. Sintering of clay-chamotte ceramic composites for refract-tory bricks // Ceramics International. 2008. V. 34, No. 5. P. 1207 – 1213.

Статью можно приобрести
в электронном виде!

PDF формат

500

DOI: 10.14489/glc.2022.11.pp.052-062
Тип статьи: Научная статья
Оформить заявку

Ключевые слова

Для цитирования статьи

Пундиене И., Пранцкевичене И., Клигис М. Высокотемпературные легковесные щелочно-активированные материалы с добавкой многослойных углеродных нанотрубок // Стекло и керамика. 2022. Т. 95, № 11. С. 52 – 62. DOI: 10.14489/glc.2022.11.pp.052-062