Методом сварки пучком фемтосекундного лазера продемонстрирована возможность создания стабильного соединения материалов с различными значениями термического коэффициента линейного расширения (ТКЛР): фосфатного стекла и цинкомагниевоалюминиевосиликатного ситалла (в диапазоне 20 – 300 ?С их ТКЛР равен 120?10–7 К–7 и 62?10–7 К–7 соответственно). Методами оптической микроскопии и спектроскопии комбинационного рассеяния исследованы структурные особенности сварных швов, полученных по различным режимам лазерной сварки, и оптимизированы режимы лазерной сварки.
Сергей Сергеевич Федотов – канд. хим. наук, ассистент кафедры химической технологии стекла и ситаллов Российского химико-технологического университета им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Алексей Сергеевич Липатьев – канд. хим. наук, ассистент кафедры химической технологии стекла и ситаллов Российского химико-технологического университета им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Татьяна Олеговна Липатьева – канд. хим. наук, ассистент кафедры химической технологии стекла и ситаллов Российского химико-технологического университета им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Георгий Юрьевич Шахгильдян – канд. хим. наук, доцент, кафедра химической технологии стекла и ситаллов, Российский химико-технологический университет им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Сергей Викторович Лотарев – канд. хим. наук, доцент кафедры химической технологии стекла и ситаллов Российского химико-технологического университета им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россиян. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Виталий Иванович Савинков – канд. техн. наук, ассистент кафедры химической технологии стекла и ситаллов Российского химико-технологического университета им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Владимир Николаевич Сигаев – д-р хим. наук, профессор, руководитель Международного центра лазерных технологий, руководитель Международной лаборатории функциональных материалов на основе стекла им. П. Д. Саркисова, заведующий кафедрой химической технологии стекла и ситаллов РХТУ им. Д. И. Менделеева, Москва, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
1. Pan Y. J., Yang R. J. A glass microfluidic chip adhesive bonding method at room temperature // J. Micromech. Microeng. 2006. V. 16. P. 2666.
2. Lima R. S., Leao P. A. G. C., Piazzetta M. H. O., et al. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips // Sci. Rep. 2015. V. 5. P. 1 – 15.
3. Павлушкин Н. М., Журавлев А. К. Легкоплав-кие стекла. М.: Энергия,1970. 145 с.
4. Чакветадзе Д. К., Спиридонов Ю. А., Савин-ков В. И. и др. Влияние гранулометрического состава титаната свинца на ТКЛР легкоплавких стеклокомпо-зиционных материалов для вакуумплотного низкотем-пературного спаивания изделий из корунда // Стекло и керамика. 2017. № 5. С. 34 – 37.[Chakvetadze D. K., Spiridonov Yu. A., Savinkov V. I., et al. Lead Titanate Granulometric Composition Ef-fect on CLTE of Low-Melting Glass-Composition Materials for Vacuum-Tight Low-Temperature Soldering of Corun-dum Parts // Glass Ceram. 2017. V. 74, No. 5-6. P. 176 – 179.]
5. Feng G., Li Z., Xu X., et al. Glass-copper anodic bonding through activated Sn-0.6 Al solder // J. Mater. Pro-cess. Technol. 2018. V. 254. P. 108 – 113.
6. Frede M., Wilhelm R., Brendel M., et al. High power fundamental mode Nd: YAG laser with efficient birefringence compensation // Opt. Express 2004. V. 12. P. 3581 – 3589.
7. Howlader M. M. R., Suehara S., Takagi H., et al. Room-temperature microfluidics packaging using sequen-tial plasma activation process // IEEE Trans. Adv. Packag. 2006. V. 29. P. 448 – 456.
8. Липатьева Т. О., Федотов С. С., Липатьев А. С. и др. Прецизионная лазерная сварка кварцевого стекла с железоникелевымсплавом // Стекло и керамика. 2021. № 11. С. 435 – 437.[Lipat’eva T. O., Fedotov S. S., Lipat’ev A. S., et al. Precision Laser Welding of Silica Glass with Iron-Nickel Alloy // Glass Ceram. 2021. V. 77, No. 11. P. 435 – 437.]
9. Carter R. M., Troughton M., Chen J., et al. Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy // Appl. Opt. 2017. V. 56. P. 4873 – 4881.
10. Li H., Yi R., Chen C. Microstructure and mechanical performance of dissimilar material joints of 2024Al and SiO2 glass by ultrasonic assisted soldering with Cu interlayer // J. Mater. Res. Technol. 2022. V. 18. P. 3227 – 3239.
11. Cvecek K., Dehmel S., Miyamoto I., Schmidt M. A review on glass welding by ultra-short laser pulses // Int. J. Extreme Manuf. 2019. V. 1. P. 042001.
12. Pohl L., von Witzendorff P., Chatzizyrli E., et al. CO2 laser welding of glass: numerical simulation and ex-perimental study // Int. J. Adv. Manuf. Technol. 2017. V. 90. P. 397 – 403.
13. de Pablos-Mart?n A., Lorenz M., Grundmann M., Hoche Th. Laser welding of fused silica glass with sapphire using a non-stoichiometric, fresnoitic Ba2TiSi2O8?3SiO2 thin film as an absorber // Opt. Laser Technol. 2017. V. 92. P. 85 – 94.
14. Zimmermann F., Richter S., D?ring S., et al. Ultrastable bonding of glass with femtosecond laser bursts // Appl. Opt. 2013. V. 52. P. 1149 – 1154.
15. Lipateva T. O., Okhrimchuk A. G., Lipatiev A. S., et al. Robust and adhesive-free joint of Nd: YAG crystals by femtosecond laser-assisted welding // Opt. Laser Technol. 2022. V. 146. P. 107594.
16. Lafon R. E., Li S., Micalizzi F., Lebair S. Ultrafast laser bonding of glasses and crystals to metals for epoxy-free optical instruments // Components and Packaging for Laser Systems VI. SPIE. 2020. V. 11261. P. 1126103.
17. Morris J. A., Pollock C. R. Passive Q switching of a diode-pumped Nd: YAG laser with a saturable absorber // Opt. Lett. 1990. V. 15. P. 440 – 442.
18. Пат. РФ2426701. Оптическое фосфатное стекло / Саркисов П. Д., Сигаев В. Н., Голубев Н. В., Савинков В. И. Опубл. 20.08.2011.
19. Boiko R. M., Okhrimchuk A. G., Shestakov A. V. Glass Ceramics Co2+ Saturable Absorber Q-switch for 1.3 – 1.6 ?m spectral region // Advanced Solid State Lasers. Optica Publishing Group. 1998. V. 19. P. LS9.
20. Malyarevich A. M., Denisov I. A., Yumashev K. V., et al. Cobalt-doped transparent glass ceramic as a saturable absorber Q switch for erbium: glass lasers // Appl. Opt. 2001. V. 40. P. 4322 – 4325.
21. Shakhgildyan G., Durymano V., Ziyatdinova M., et al. Effect of Gold Nanoparticles on the Crystallization and Optical Properties of Glass in ZnO–MgO–Al2O3–SiO2 System // Crystals. 2022. V. 12. P. 287.
22. Sigaev V. N., Savinkov V. I., Lotarev S. V., et al. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage // Nanotechnology. 2013. V. 24. P. 225302.
Статью можно приобрести
в электронном виде!
PDF формат
500 руб
DOI: 10.14489/glc.2023.02.pp.003-008
Тип статьи:
Научная статья
Оформить заявку