1. Stookey S. D. Catalyzed crystallization of glass in theory and practice // Ind. Eng. Chem. 1959. V. 51, No. 7. P. 805 – 808.
2. Beall G. H. Dr. S. Donald (Don) Stookey (1915 – 2014): pioneering researcher and adventurer // Front. in Mater. 2016. V. 3. P. 37.
3. Смолеговский А. М. И. И. Китайгородский и его труды в области химии и химической технологии стекла, керамики и ситаллов. Пермь: Базальтовые технологии, 2005. 141 с.
4. Павлушкин Н. М. Основы технологии ситаллов: учеб. пособие для вузов. M.: Стройиздат, 1979. 360 с.
5. Holand W., Beall G. H. Glass-ceramic technology. New Jersey: John Wiley & Sons, 2019. 422 p.
6. Beall G. H. Design and properties of glass-ceramics // Annu. Rev. Mater. Sci. 1992. V. 22, No. 1. P. 91 – 119.
7. Zanotto E. A bright future for glass-ceramics // Am. Ceram. Soc. Bull. 2010. V. 89. P. 19 – 27.
8. Сигаев В. Н. Строение оксидных стекол и процессы формирования полярных стеклокристаллических текстур // Физика и химия стекла. 1998. T. 24, № 4. С. 429 – 444.
9. Sigaev V. N., Pernice P., Aronne A., et al. Crystallization of KTiOPO4 phase from potassium titatium phosphate glasses, producing second harmonic generation // J. Non Cryst. Solids. 2001. V. 292, No. 1 – 3. P. 59 – 69.
10. Sigaev V. N., Stefanovich S. Yu., Champagnon B., et al. Amorphous nanostructuring in potassium niobium silicate glasses by SANS and SHG: A new mechanism for second-order optical non-linearity of glasses // J. Non Cryst. Solids. 2002. V. 306, No. 3. P. 238 – 248.
11. Low thermal expansion glass ceramics / H. Bach, D. Krause (ed.). Berlin, Heidelberg, Springer. 2005. P. 121 – 235.
12. Liu X., Zhou J., Zhou S., et al. Transparent glass-ceramics functionalized by dispersed crystals // Prog. Mater. Sci. 2018. V. 97. P. 38 – 96.
13. Deubener J., Allix M., Davis M. J., et al. Updated definition of glass-ceramics // J. Non Cryst. Solids. 2018. V. 501. P. 3 – 10.
14. M?ller R., Reinsch S. Viscous?phase silicate processsing // Ceramics and composites processing methods. 2012. V. 3. P. 75 – 144.
15. Hartmann P., Jedamzik R., Carr? A., et al. Glass ceramic ZERODUR®: Even closer to zero thermal expansion: a Review, Part 1 // JATIS. 2021. V. 7, No. 2. P. 020901.
16. Hartmann P., Jedamzik R., Carr? A., et al. Glass ceramic ZERODUR®: Even closer to zero thermal expansion: a Review, Part 2 // JATIS. 2021. V. 7, No. 2. P. 020902.
17. Gardopee G. J., Newnham R. E., Halliyal A. G., et al. Pyroelectric glass?ceramics // Appl. Phys. Lett. 1980. V. 36. P. 817–818.
18. Sigaev V. N., Lopatina E. V., Sarkisov P. D., et al. Grain-oriented surface crystallization of lanthanum borosilicate and lanthanum borogermanate glasses // MSEB. 1997. V. 48, No. 3. P. 254 – 260.
19. Sigaev V. N., Sarkisov P. D., Stefanovich S. Yu., et al. Glass ceramic textures based on new ferroelectric complex oxides // Ferroelectrics. 1999. V. 233, No. 3 – 4. P. 165 – 185.
20. Komatsu T. Design and control of crystallization in oxide glasses // J. Non Cryst. Solids. 2015. V. 428. P. 156 – 175.
21. Honma T., Maeda K., Nakane S., et al. Unique properties and potential of glass-ceramics // J. Ceram. Soc. Japan. 2022. V. 130, No. 8. P. 545 – 551.
22. Yu Y., Fang Z., Ma C., et al. Mesoscale engineering of photonic glass for tunable luminescence // NPG Asia Mater. 2016. V. 8, No. 10. P. 318.
23. Mashinsky V. M., Karatun N. M., Bogatyrev V. A., et al. Microfluorescence analysis of nanostructuring inhomogeneity in optical fibers with embedded gallium oxide nanocrystals // Microsc. Microanal. 2012. V. 18, No. 2. P. 259 – 265.
24. Grabtchikov A. S., Khodasevich I. A., Golubev N. V., et al. Optical amplification in Ni2+-doped gallium germanosilicate glass-ceramics // Opt. Commun. 2021. V. 491. P. 126955.
25. Fang Z., Zheng S., Peng W., et al. Fabrication and characterization of glass?ceramic fiber?containing Cr3+?doped ZnAl2O4 nanocrystals // J. Am. Ceram. 2015. V. 98, No. 9. P. 2772 – 2775.
26. Karpukhina N., Hill R. G., Law R. V. Crystallisation in oxide glasses – a tutorial review // Chem. Soc. Rev. 2014. V. 43, No. 7. P. 2174 – 2186.
27. Fokin V. M. Zanotto E. D., Yuritsyn N. S., et al. Homogeneous crystal nucleation in silicate glasses: a 40 years perspective // J. Non Cryst. Solids. 2006. V. 352, No. 26–27. P. 2681 – 2714.
28. Suzuki F. Ogawa K., Honma T., et al. Laser patterning and preferential orientation of two-dimensional planar ?-BaB2O4 crystals on the glass surface // J. Solid State Chem. 2012. V. 185. P. 130 – 135.
29. Honma T., Komatsu T. Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning // Opt. express. 2010. V. 18, No. 8. P. 8019 – 8024.
30. Сигаев В. Н., Алиева Е. А., Лотарев С. В. и др. Локальная кристаллизация стекла системы La2O3–B2O3–GeO2 под действием лазерного излучения // Физика и химия стекла. 2009. V. 35, No. 1. P. 14 – 23.
31. Lipatiev A. S. Lipateva T. O., Lotarev S. V., et al. Direct laser writing of LaBGeO5 crystal-in-glass waveguide enabling frequency conversion // Cryst. Growth Des. 2017. V. 17, No. 9. P. 4670 – 4675.
32. Tan D., Zhang B., Qiu J. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications // Laser Photonics Rev. 2021. V. 15, No. 9. P. 2000455.
33. Komatsu T., Honma T. Laser patterning and growth mechanism of orientation designed crystals in oxide glasses: A review // J. Solid State Chem. 2019. V. 275. P. 210 – 222.
34. McAnany S. D., Veenhuizen K. J., Kiss A. M., et al. Evolution of glass structure during femtosecond laser assisted crystallization of LaBGeO5 in glass // J. Non Cryst. Solids. 2021. V. 551. P. 120396.
35. Lipatiev A., Fedotov S., Lotarev S., et al. Direct laser writing of depressed-cladding waveguides in extremely low expansion lithium aluminosilicate glass-ceramics // Opt. Laser Technol. 2021. V. 138. P. 106846.
36. Guan J. Femtosecond-laser-written integrated photonics in bulk glass-ceramics Zerodur // Ceram. 2021. V. 47, No. 7. P. 10189 – 10192.
37. Ferreira P. H. D., Fabris D. C. N., Boas M. V., et al. Transparent glass-ceramic waveguides made by femtosecond laser writing // Opt. Laser Technol. 2021. V. 136. P. 106742.
38. Bhardwaj V. R., Simova E., Corkum P. B., et al. Femto-second laser-induced refractive index modification in multicom-ponent glasses // J. Appl. Phys. 2005. V. 97, No. 8. P. 083102.
39. Пат. РФ 2781465, С1 МПК G02/B 6/10. Способ лазерной записи интегральных волноводов / А. С. Наумов, С. В. Лотарев, А. С. Липатьев и др. Опубл. 12.10.2022.
40. Orlova L., Chainikova A., Alekseeva L., et al. Recent advances in radio transparent glass-ceramic materials based on high-temperature aluminosilicate systems // Rus. J. Inorg. Chem. 2015. V. 60, No. 13. P. 1692 – 1707.
41. Beverini N., Di Virgilio A., Belfi J., et al. High-accuracy ring laser gyroscopes: Earth rotation rate and relativistic effects // J. Phys.: Conf. Ser. 2016. V. 723. P. 012061.
42. Kuznetsov A. G., Molchanov A. V., Chirkin M. V., et al. Precise laser gyroscope for autonomous inertial navigation // Quantum Elec. 2015. V. 45. P. 78.
43. Golyaev Yu. D., Zapotyl'ko N. R., Nedzvetskaya A. A., et al. Thermally stable optical cavities for Zeeman laser gyroscopes // Opt. Spectrosc. 2012. V. 113, No. 2. P. 227 – 229.
44. Manske E., Fr?hlich T., F??l R., et al. Progress of nanopositioning and nanomeasuring machines for cross-scale measurement with sub-nanometre precision // Meas. Sci. and Technol. 2020. V. 31. P. 085005.
45. Mitra I. ZERODUR: a glass-ceramic material enabling optical technologies // Opt. Mater. Express. 2022. V. 2. P. 3563 – 3576.
46. Liu T., Li C., Huang Q., et al. Characterization of structure and properties of MgO–Al2O3–SiO2–B2O3–Cr2O3 glass-ceramics // J. Non Cryst. Solids. 2020. V. 543. P. 120154.
47. Denry I., Holloway J. A. Ceramics for dental applications: a review // Mater. 2010. V. 3, No. 1. P. 351 – 368.
48. Kokubo T. Bioactive glass ceramics: properties and applications // Biomater. 1991. V. 12, No. 2. P. 155 – 163.
49. Montazerian M., Zanotto E. D. History and trends of bioactive glass?ceramics // J. Biomed. Mater. Res. A. 2016. V. 104, No. 5. P. 1231 – 1249.
50. Sohn S. B., Choi S. Y., Lee Y. K. Controlled crystallization and characterization of cordierite glass-ceramics for magnetic memory disk substrate // J. Mater. Sci. 2000. V. 35. P. 4815 – 4821.
51. Benitez T., G?mez S. Y., de Oliveira A. P. N., et al. Transparent ceramic and glass-ceramic materials for armor applications // Ceram. Int. 2017. V. 43. P. 13031 – 13046.
52. Ходаковская Р. Я. Химия титансодержащих стекол и ситаллов. М.: Химия, 1978. 285 c.
53. Ходаковская Р. Я., Сигаев В. Н., Плуталов Н. Ф. и др. Фазовое разделение стекол системы Li2O–Al2O3–SiO2–TiO2 на начальных стадиях ситаллизации // Физика и химия стекла. 1979. Т. 5, № 2. С. 134 –140.
54. Сычева Г. А. Зарождение кристаллов в литиево-силикатных фоточувствительных стеклах. Saarbr?cken Germany: LAP LAMBERT Academic Publishing, 2011. 148 с.
55. Matusita K., Tashiro M. Rate of homogeneous nucleation in alkali disilicate glasses // J. Non Cryst. Solids. 1973. V. 11, No. 5. P. 471 – 484.
56. Loshmanov A. A., Sigaev V. N., Khodakovskaya R. Ya., et al. Small-angle neutron scattering on silica glasses containing titania // J. Appl. Crystallogr. 1974. V. 7, No. 2. P. 207 – 210.
57. Сигаев В. Н., Лошманов А. А., Ходаковская Р. Я. и др. Строение титаносиликатных стекол по данным нейтронной дифракции // Физика и химия стекла. 1975. Т. 1, № 5. С. 403 – 406.
58. Kleebusch E. Patzig C., H?che T., et al. The evidence of phase separation droplets in the crystallization process of a Li2O–Al2O3–SiO2 glass with TiO2 as nucleating agent – An X-ray diffraction and (S) TEM-study supported by EDX-analysis // Ceram. Int. 2018. V. 44, No. 3. P. 2919 – 2926.
59. Kleebusch E., Thieme C., Patzig C., et al. Crystallization of lithium aluminosilicate and microstructure of a lithium alumino borosilicate glass designed for zero thermal expansion // Ceram. Int. 2023. V. 49, No. 13. P. 21246 – 21254.
60. Kleebusch E., Patzig C., Krause M., et al. The titanium coordination state and its temporal evolution in Li2O–Al2O3–SiO2 (LAS) glasses with ZrO2 and TiO2 as nucleation agents – a Xanes investigation // Ceram. Int. 2020. V. 46, No. 3. P. 3498 – 3501.
61. Kleebusch E., Patzig C., H?che T., et al. A modified B2O3 containing Li2O–Al2O3–SiO2 glass with ZrO2 as nucleating agent – crystallization and microstructure studied by XRD and (S) TEM-EDX // Ceram. Int. 2018. V. 44. P. 19818 – 19824.
62. Kleebusch E., Patzig C., H?che T., et al. Effect of the concentrations of nucleating agents ZrO2 and TiO2 on the crystallization of Li2O-Al2O3-SiO2 glass – an X-Ray diffraction and TEM investigation // J. Mater. Sci. 2016. V. 51. P. 10127 – 10138.
63. Kleebusch E., R?ssel C., Patzig C., et al. Evidence of epitaxial growth of high-quartz solid solution on ZrTiO4 nuclei in a Li2O–Al2O3–SiO2 glass // J. Alloys Compd. 2018. V. 748. P. 73 – 79.
64. Сигаев В. Н. Нейтронографическое исследование титаносиликатных стекол: дис. … к.ф.-м. наук. М.: Институт кристаллографии АН СССР, 1975. 155 с.
65. Li M., Xiong C., Ma Y., et al. Study on crystallization process of Li2O–Al2O3–SiO2 glass-ceramics based on in situ analysis // Mater. 2022. V. 15, No. 22. P. 8006.
66. Marotta A., Buri A., Branda F. Nucleation in glass and differential thermal analysis // J. Mater. Sci. 1981. V. 16. P. 341 – 344.
67. Davis M. J., Mitra I. Crystallization measurements using DTA methods: applications to Zerodur® // J. Am. Ceram. 2003. Т. 86, No. 9. P. 1540 – 1546.
68. Сигаев В. Н., Савинков В. И., Шахгильдян Г. Ю. и др. О возможности прецизионного управления температурным коэффициентом линейного расширения прозрачных литиевоалюмосиликатных ситаллов вблизи нулевых значений // Стекло и керамика. 2019. №. 12. С. 11 – 16. [Sigaev V. N., Savinkov V. I., Shakhgil’dyan G. Yu., et al. On the possibility of precision control of the linear thermal expansion coefficient of transparent lithium-aluminum-silicate sitals near zero values // Glass Ceram. 2020. V. 76, No. 11. P. 446 – 450.]
69. Наумов А. С., Алексеев Р. О., Савинков В. И., Сигаев В. Н. Зарождение и рост кристаллов в объеме стекла на основе системы Li2O–Al2O3–SiO2 // Стекло и керамика. 2023. Т. 96, № 8. С. 3 – 11.[Naumov A. S., Alekseev R. O., Savinkov V. I., Sigaev V. N. Nucleation and crystals growth in the volume of glass Li2O–Al2O3–SiO2 system // Glass Ceram. 2023. V. 80. In press.]
70. Beall G. H., Pinckney L. R. Nanophase glass?ceramics // J. Am. Ceram. 1999. V. 82, No. 1. P. 5 – 16.
71. Wang Y. Zhang Y., Dong L., et al. The application and development of ultra low expansion glass-ceramic in aerospace area // AOPC 2017: Space Optics and Earth Imaging and Space Navigation. SPIE. 2017. V. 10463. P. 87 – 92.
72. Пат. РФ 2 569 703, С1 МПК C03C 10/12. Способ получения оптического ситалла / В. Н. Сигаев, В. И. Савинков, Е. Е. Строганова и др. Опубл. 27.11.2015.
73. Hatch R. A. Phase equilibrium in the system: Li2O•Al2O3–SiO2 // Am. Min. 1943. V. 28, No. 9–10. P. 471 – 496.
74. Konar B., Kim D. G., Jung I. H. Critical thermodynamic optimization of the Li2O–Al2O3–SiO2 system and its application for the thermodynamic analysis of the glass-ceramics // J. Eur. Ceram. 2018. V. 38, No. 11. P. 3881 – 3904.
75. Roy R., Roy D. M., Osborn E. F. Compositional and stability relationships among the lithium aluminosilicates: eucryptite, spodumene, and petalite // J. Am. Ceram. 1950. V. 33, No. 5. P. 152 – 159.
76. Schulz H. Thermal expansion of beta eucryptite // J. Am. Ceram. 1974. V. 57, No. 7. P. 313 – 318.
77. Gillery F. H., Bush E. A. Thermal contraction of ??eucryptite (Li2O?Al2O3?2SiO2) by X?Ray and dilatometer methods // J. Am. Ceram. 1959. V. 42, No. 4. P. 175 – 177.
78. Lichtenstein A. I., Jones R. O., Xu H., et al. Anisotropic thermal expansion in the silicate ?-eucryptite: A neutron diffraction and density functional study // Phys. Rev. B. 1998. V. 58, No. 10. P. 6219.
79. Petzoldt J., Pannhorst W. Chemistry and structure of glass-ceramic materials for high precision optical applications // J. Non Cryst. Solids. 1991. V. 129, No. 1 – 3. P. 191 – 198.
80. Zhu L., Wang M., Xu Y., et al. Dual effect of ZrO2 on phase separation and crystallization in Li2O–Al2O3–SiO2–P2O5 glasses // J. Am. Ceram. 2022. V. 105, No. 9. P. 5698 – 5710.
81. Wu J., Lin C., Liu J., et al. The effect of complex nucleating agent on the crystallization, phase formation and performances in lithium aluminum silicate (LAS) glasses // J. Non Cryst. Solids. 2019. V. 521. P. 119486.
82. Maier V., M?ller G. Mechanism of oxide nucleation in lithium aluminosilicate glass?ceramics // J. Am. Ceram. 1987. V. 70, No. 8. P. 176 – 178.
83. Venkateswaran C., Sharma S. C., Pant B., et al. Crystallisation studies on site saturated lithium aluminosilicate (LAS) glass // Thermochim. Acta. 2019. V. 679. P. 178311.
84. Kumar A., Chakrabarti A., Shekhawat M. S., et al. Transparent ultra-low expansion lithium aluminosilicate glass-ceramics: crystallization kinetics, structural and optical properties // Thermochim. Acta. 2019. V. 676. P. 155 – 163.
85. Figueira F. C., Bernardin A. M. Sinter-crystallization of spodumene LAS glass-ceramic tiles processed by single-firing // J. Alloys Compd. 2019. V. 800. P. 525 – 531.
86. Zhang R., Yi L., Kong F., et al. Rapid preparation of low thermal expansion transparent LAS nanocrystalline glass by one-step thermoelectric treatment // Ceram. Int. 2021. V. 47, No. P. 34380 – 34387.
87. Qian G., Zhang T., Zhang L. J., et al. Demonstrations of centimeter-scale polymer resonator for resonant integrated optical gyroscope // Sens. and Actuators A. Phys. 2016. V. 237. P. 29 – 34.
88. De Carlo M., De Leonardis F., Passaro V. M. N. Design rules of a microscale PT-symmetric optical gyroscope using group IV platform // J. Light. Technol. 2018. V. 36, No. 16. P. 3261 – 3268.
89. Molla A. R., Rodrigues A. M., Singh S. P., et al. Crystallization, mechanical, and optical properties of transparent, nanocrystalline gahnite glass?ceramics // J. Am. Ceram. 2017. V. 100, No. 5. P. 1963 – 1975.
90. Mitchell A. L., Perea D. E., Wirth M. G., et al. Nanoscale microstructure and chemistry of transparent gahnite glass-ceramics revealed by atom probe tomography // Scr. Mater. 2021. V. 203. P. 114110.
91. Шахгильдян Г. Ю., Алексеев Р. О., Наумов А. С. и др. Исследование структуры и влияния ионного обмена на микротвердость малощелочной прозрачной стеклокерамики на основе ганита // Стекло и керамика. 2023. Т. 96, № 3. С. 17 – 25. [Shakhgildyan G. Y., Alexeev R. O., Naumov A. S., et al. Investigation of the structure and influence of ion exchange on the microhardness of low-alkali transparent ganite glass-ceramics // Glass Ceram. 2023. V. 80, No. 3–4. P. 94 – 99.]
92. Шахгильдян Г. Ю., Савинков В. И., Шахгильдян А. Ю. и др. Влияние условий ситаллизации на твердость прозрачных ситаллов в системе ZnO–MgO–Al2O3–SiO2 // Стекло и керамика. 2020. № 11. С. 24 – 27. [Shakhgil’dyan G. Y., Savinkov V. I., Shakhgil’dyan A. Y., et al. Effect of sitallization conditions on the hardness of transparent sitalls in the system ZnO–MgO–Al2O3–SiO2 // Glass Ceram. 2021. V. 77. P. 426 – 428.]
93. Shakhgildyan G. Y., Alekseev R. O., Golubev N. V., et al. One-step crystallization of gahnite glass-ceramics in a wide thermal gradient // Chem. Eng. 2023. V. 7, No. 2. P. 37.
94. CN Pat. 112919810. Int C1. C03C 10/04. Glass ceramic, glass ceramic product and manufacturing method of glass ceramic product / B. Yuan, et al. Date of Patent: 06.08.2021.
95. Lapointe J., Gagn? M., Li M. J., et al. Making smart phones smarter with photonics // Opt. Express. 2014. V. 22, No. 13. P. 15473 – 15483.
96. Lapointe J., Parent F., de Lima Filho E. S., et al. Toward the integration of optical sensors in smartphone screens using femtosecond laser writing // Opt. Lett. 2015. V. 40, No. 23. P. 5654 – 5657.
97. Han J., Liu J., Yao X., et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms // Opt. Express. 2015. V. 23, No. 3. P. 3534 – 3549.
98. Наумов А. С., Лотарев С. В., Липатьев А. С. и др. Лазерная аморфизация кристаллической фазы в объеме термостабильного литиевоалюмосиликатного ситалла // Неорганические материалы. 2023. Т. 59, № 4. С. 419 – 424.[Naumov A. S., Lotarev S. V., Lipatiev A. S. et al. Laser Amorphization of a Crystalline Phase in the Bulk of a Thermally Stable Lithium Aluminosilicate Glass-Ceramic // Inorg. Mater. 2023. V. 59. No. 4. P. 419 – 424.]
99. Сигаев В. Н., Наумов А. С., Липатьев А. С. И др. Фазовые превращения под воздействием фемтосекундных импульсов в ситалле системы ZnO–MgO–Al2O3–SiO2 // Стекло и керамика. 2023. Т. 96, № 1. С. 3 – 11.
100. [Sigaev V. N., Naumov A. S., Lipat’ev A. S., et al. Phase Transformations Under the Action of Femtosecond Pulses in ZnO–MgO–Al2O3–SiO2 Sitalls // Glass Ceram. 2023. V. 80, No. 1 – 2. P. 1 – 6.].