Представлены общие сведения o цирконате кальция и физико-химических характеристиках изделий на его основе. Рассмотрены основные области применения керамических и огнеупорных материалов на основе CaZrO3.
ISSN 0131-9582
Красный Б. Л.
, Макаров Н. А. , Иконников К. И. , Галганова А. Л. , Лемешев Д. О. , Бернт Д. Д. , Родимов О. И.Представлены общие сведения o цирконате кальция и физико-химических характеристиках изделий на его основе. Рассмотрены основные области применения керамических и огнеупорных материалов на основе CaZrO3.
Борис Лазаревич Красный – д-р техн. наук, генеральный директор ООО «НТЦ «Бакор», Москва, Россия
Николай Александрович Макаров – д-р техн. наук, профессор, заведующий кафедрой химической технологии керамики и огнеупоров, Российский химико-технологический университет им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россия
Константин Игоревич Иконников – канд. техн. наук, руководитель исследовательского центра специальной керамики ООО «НТЦ «Бакор», Москва, Россия
Анна Львовна Галганова – заместитель начальника исследовательского центра специальной керамики ООО «НТЦ «Бакор», Москва, Россия
Дмитрий Олегович Лемешев – канд. техн. наук, доцент кафедры химической технологии керамики и огнеупоров, декан факультета технологии неорганических веществ и высокотемпературных материалов, Российский химико-технологический университет им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россия
Дмитрий Дмитриевич Бернт – канд. физ.-мат. наук, ученый секретарь ООО «НТЦ «Бакор», Москва, Россия
Олег Игоревич Родимов – научный сотрудник ООО «НТЦ «Бакор», Москва, Россия
1. Красный Б. Л., Макаров Н. А., Иконников К. И. и др. Цирконат кальция, способы синтеза и области применения керамических и огнеупорных материалов на его основе (обзор). Часть I: способы синтеза цирконата кальция // Стекло и керамика. 2023. Т. 96, № 12. С. 51 – 60.
2. Rog G., Dudek M., Kozlowska-Rog A., Bucko M. Calcium zirconate: preparation, properties and application to the solid oxide galvanic cells // Electrochimica Acta. 2002. V. 47, No. 28. P. 4523 – 4529. URL: https://doi.org/10.1016/S0013-4686(02)00540-6
3. Dudek M., R?g G., Bogusz W. Calcium zirconate as a solid electrolyte for electrochemical devices applied in metallurgy // Materials science-Poland. 2006. V. 24, No. 1. P. 253 – 260.
4. Janke D. Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts // Metallurgical Transactions B. 1982. V. 13, No. 2. P. 227 – 235.
5. Yajima T., Kazcoka H., Yogo T., Iwahara H. Proton conduction in sintered oxides based on CaZrO3 // Solid State Ionics. 1991. V. 47, No. 3–4. P. 271 – 275.
6. Dunyushkina A., Sh Khaliullina A., Meshcherskikh A. N., Pankratov A. A. Sintering and conductivity of Sc-doped CaZrO3 with Fe2O3 as a sintering aid // Ceramics International. 2021. V. 75, No. 11. P. 3040 – 3048. URL: https://doi.org/10.1016/j.ceramint.2020.12.168
7. Wang C., Xu X., Yu H., et al. A study of the solid electrolyte Y2O3-doped CaZrO3 // Solid State Ionics. 1988. V. 28 – 30. P. 542 – 545. URL: https://doi.org/10.1016/S0167-2738(88)80099-7
8. Yajima T., Koide K., Takai H., et al. Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries // Solid State Ionics. 1995. V. 79. P. 333 – 337. URL: https://doi.org/10.1016/0167-2738(95)00083-I
9. Pollet M., Daturi M., Marinel S. Vibrational spectroscopy study of the lattice defects in CaZrO3 ceramics // Journal of the European Ceramic Society. 2004. V. 24, No. 6. P. 1805 – 1809. URL: https://doi.org/10.1016/S0955-2219(03)00512-0
10. Prasanth C. S., Kumar H. P., Pazhani R., et al. Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics // Journal of Alloys and Compounds. 2008. V. 464, No. 1–2. P. 306 – 309. URL: https://doi.org/10.1016/j.jallcom.2007.09.098
11. Красный Б. Л., Иконников К. И., Галганова А. Л., Родимов О. И. Синтез и спекание огнеупорного цирконата кальция для высокотемпературной службы в контакте с титаном и сплавами на его основе // Цветные металлы. 2022. № 1. С. 49 – 55. URL: https://doi.org/ 10.17580/tsm.2022.01.06
12. Yu T., Zhu W., Chen C., et al. Preparation and characterization of sol-gel derived CaZrO3 dielectric thin films for high-k applications // Physica B. 2004. V. 348, No. 1 – 4. P. 440 – 445. URL: https://doi.org/10.1016/j.physb.2004.01.147
13. Qiu X. Y., Liu H. W., Fang F. F., et al. Thermal stability and dielectric properties of ultrathin CaZrOx films prepared by pulsed laser deposition // Applied Physics A. 2005. V. 81, No. 7. P. 1431 – 1434.
14. Qiu X .Y., Liu H. W., Fang F., et al. Interfacial properties of high-k dielectric CaZrOx films deposited by pulsed laser deposition // Applied Physics Letters. 2006. V. 88, No. 18. Art. 182907. URL: https://doi.org/10.1063/1.2200750
15. Резницкий Л. А., Гузей А. С. Термодинамические свойства титанатов, цирконатов и гафнатов щелочноземельных металлов // Успехи химии, выпуск 2. 1978. Т. XLVII. С. 177 – 211.
16. Kozuka H., Kajita Y., Tuchiya Y., Honda T., Ohta S. New kind of chrome-free (MgO–CaO–ZrO2) bricks for burning zone of rotary cement kiln // Proceedings of Unified International Technical Conference on Refractories. Sao Paulo. 1993. P. 1027 – 1037.
17. Kozuka H., Kajita Y., Tokunaga K., et al. Further improvements of MgO–CaO–ZrO2 bricks for burning zone of rotary cement kiln // UNITECR 95 Proceedings, Ed. by The Technical Association of Refractories. Japan. Kyoto. 1995. P. 256 – 263.
18. Rodriguez J. L., Baudin C., Pena P. Relationships between phase constitution and mechanical behaviour in MgO–CaZrO3-calcium silicate materials // Journal of the European Ceramic Society. 2004. V. 24, No. 4. P. 669 – 679. URL: https://doi.org/10.1016/S0955-2219(03)00268-1
19. Serena S., Sainz M. A., de Aza S., Caballero A. Thermodynamic assessment of the system ZrO2–CaO–MgO using new experimental results // Journal of the European Ceramic Society. 2005. V. 25, No. 5. P. 681 – 693. URL: https://doi.org/10.1016/j.jeurceramsoc.2004.02.011
20. Serena S., Sainz M. A., Caballero A. The system Clinker–MgO–CaZrO3 and its application to the corrosion behavior of CaZrO3/MgO refractory matrix by clinker // Journal of the European Ceramic Society. 2009. V. 29, No. 11.P. 2199 – 2209. URL: https://doi.org/10.1016/j.jeurceramsoc.2009.01.015
21. Rodriguez-Galicia J., de Aza A. H., Rendon Angeles J. C., Pena P. The Mechanism of corrosion of MgOCaZrO3-calcium silicate materials by cement clinker // Journal of the European Ceramic Society. 2007. V. 27, No. 1. P. 79 – 89. URL: https://doi.org/10.1016/j.jeurceramsoc.2006.01.014
22. Obregon ?., Rodriguez-Galicia J. L., Lopez-Cuevas J, et al. MgO–CaZrO3-based refractories for cement kilns // Journal of the European Ceramic Society. 2011. V. 31, No. 1–2. P. 61 – 74. URL: https://doi.org/10.1016/j.jeurceramsoc.2010.08.020
23. Lang J.-F., You J.-G., Zhang X.-F., et al. Effect of MgO on thermal shock resistance of CaZrO3 ceramic Ceramics International. 2018. V. 44, No. 18. P. 22176 – 22180. URL: https://doi.org/10.1016/j.ceramint.2018.08.333
24. Szczerba J. Chemical corrosion of basic refractories by cement kiln materials // Ceramics International. 2010. V. 36, No. 6. P. 1877 – 1885. URL: https://doi.org/10.1016/j.ceramint.2010.03.019
25. Szczerba J., Sniezek E., Antonovic V. Evolution of refractory materials for rotary cement kiln sintering zone // Refractories and Industrial Ceramics. 2017. V. 58, No. 4. P. 426 – 433.
26. Contreras J. E., Castillo G. A., Rodriguez E. A., et al. Microstructure and properties of hercynite–magnesia–calcium zirconate refractory mixtures // Materials Characterization. 2005. V. 54, No. 4–5. P. 354 – 359. URL: https://doi.org/10.1016/j.matchar.2004.12.005
27. Rodr?guez E., Castillo G.-A., Contreras J., et al. Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO–CaZrO3 refractory brick for the cement industry // Ceramics International. 2012. V. 38, No. 8. P. 6769 – 6775. URL: https://doi.org/10.1016/j.ceramint.2012.05.071
28. Du Y., Jin Z., Huang P. Thermodynamic calculation of the zirconia-calcia system // Journal of the American Ceramic Society. 1992. V. 75, No. 11. P. 3040 – 3048. URL: https://doi.org/10.1111/j.1151-2916.1992.tb04384.x
29.Kim S. K., Hong T., Kim Y.-J. Evaluation of thermal stability of mold materials for magnesium investment casting // Materials transactions. 2001. V. 42, No. 3. P. 539 – 542. URL: https://doi.org/10.2320/matertrans.42.539
30. Li M., Gehre P., C. G. Aneziris. Investigation of calcium zirconate ceramic synthesized by slip casting and calcinations // J. Eur. Ceram. Soc. 2013. V. 33, No. 10. P. 2007 – 2012.
31. Li M. Development of calcium zirconate castables based on slip casted raw material for gasifier: Technische Universit?t Bergakademie Freiberg, Freiberg. 2018. P. 121.
32. Fashu S., Lototskyy M., Davids M. W., et al. A review on crucibles for induction melting of titanium alloys // Materials & Design. 2020. V. 186. Art. 108295. URL: https://doi.org/10.1016/j.matdes.2019.108295
33. Schaff?ner S. Reactions of alkaline earth zirconate refractories with titanium alloys // MATEC Web of Conferences. 2020. V. 321, No. 10012. P. 1 – 11. URL: https://doi.org/10.1051/matecconf/202032110012
34. Mitchell A. Melting and refining of superalloys and titanium alloys // ISIJ Int. 1992. V. 32, No. 5. P. 557 – 562. URL: https://doi.org/10.2355/isijinternational.32.557
35. Valencia J. J., Quested P. N. Thermophysical properties // Handbook. Casting. ASM international. Ohio. 2008. V. 15. P 468 – 481.
36. Lutjering G., Williams J. C. Titanium: Springer-Verlag, Berlin, Heidelberg, 2007. P. 442.
37. Banerjee D., Williams J. C. Perspectives on Titanium Science and Technology // Acta Materialia. 2013. V. 61, No. 3. P. 844 – 879. URL: https://doi.org/10.1016/j.actamat.2012.10.043
38. Pat. US 2205854A. Method for manufacturing titanium and alloys thereof / W. Kroll. 1940. Application 06.07.1938, Publication 25.06.1957.
39. Li B.-S., Liu A.-H., Nan H., et al. Wettability of TiAl alloy melt on ceramic moulds in electromagnetic field // Transactions of Nonferrous Metals Society of China. 2008. V. 18, No. 3. P. 518 – 522. URL: https://doi.org/10.1016/S1003-6326(08)60091-6
40. Wei J. W., Han B. Q., Wang X. C. Improvement in hydration resistance of CaO granules based on CaO–TiO2, CaO–ZrO2 and CaO–V2O5 systems // Mater. Chem.. 2020. V. 254. Art. 123413. URL: https://doi.org/10.1016/j.matchemphys.2020.123413
41. Nadachowski F. Refractories based on lime: development and perspectives // Ceramurgia International. 1976. V. 2, No. 2. P. 55 – 61. URL: https://doi.org/10.1016/0390-5519(76)90046-6
42. Kawano F., Yamoto I., Nomura J., et al. CaO Clinker with Improved Anti-Hydration Property // Taikabutsu Overseas. 1991. V. 11, No. 3. P. 29 – 36.
43. Wong L. L., Bradt R. C. Lime refractories with limestone and synthetic calcium hydroxide additions // Journal of the American Ceramic Society. 1995. V. 78, No. 6. P. 1611 – 1616. URL: https://doi.org/10.1111/j.1151-2916.1995.tb08859.x
44. Chen M., Yamaguchi A. Sintering of CaO–ZrO2 composite and its property of slaking resistance // Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi. 2002. V. 110, No. 1288. P. 1058 – 1061. URL: https://doi.org/10.2109/jcersj.110.1058
45. Chen M., Wang N., Yu J., Yamaguchi A. Oxidation protection of CaO–ZrO2–C refractories by addition of SiC // Ceramics International. 2007. V. 33, No. 8. P. 1585 – 1589. URL: https://doi.org/10.1016/j.ceramint.2006.07.004
46. Chen M., Lu C., Yu J. Improvement in performance of MgO–CaO refractories by addition of nano-sized ZrO2 // Journal of the European Ceramic Society. 2007. V. 27, No. 16. P. 4633 – 4638. URL: https://doi.org/10.1016/j.jeurceramsoc.2007.04.001
47. Gomes F., Barbosa J. J., Ribeiro C. S. Induction melting of ?-TiAl in CaO crucibles // Intermetallics. 2008. V. 16, No. 11–12. P. 1292 – 1297.
48. Li Z., Zhang S., Lee W. E. Improving the hydration resistance of lime-based refractory materials // International Materials Reviews. 2008. V. 53, No. 1. P. 1 – 20. URL: https://doi: 10.1179/174328007X212508
49. Ghasemi-Kahrizsangi S., Nemati A., Shahraki A., Farooghi M. Densification and properties of Fe2O3 nanoparticles added CaO refractories // Ceramics International. 2016. V. 42, No. 10. P. 12270 – 12275. URL: https://doi.org/10.1016/j.ceramint.2016.04.173
50. Lapin J., Gabalcov? Z., Pelachov? T. Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti–46Al–8Nb alloy // Intermetallics. 2011. V. 19, No. 3. P. 396 – 403. URL: https://doi.org/10.1016/j.intermet.2010.11.007
51. Zhang H., Tang X., Zhou C., Zhang S. Comparison of directional solidification of ?-TiAl alloys in conventional Al2O3 and novel Y2O3-coated Al2O3 crucibles // Journal of the European Ceramic Society. 2013. V. 33, No. 5. P. 925 – 934.
52. Sahu J. K., Chaudhuri S. K., Prasad B. Development of alumina clogging resistance nozzles for continuous casting of steel // Proceedings of Unified International Technical Conference on Refractories. Ed. by M. A. Stett. 1997. P. 1435 – 1440.
53. Jia Q., Cui Y. Y., Yang R. Intensified interfacial reactions between gamma titanium aluminide and CaO stabilised ZrO2 // International Journal of Cast Metals Research. 2004. V. 17, No. 1. P. 23 – 28. URL: https://doi/abs/10.1179/136404604225014800
54. Zhang Z., Frenzel J., Neuking K., Eggeler G. On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys // Acta Materialia. 2005. V. 53, No. 14. P. 3971 – 3985. URL: https://doi.org/10.1016/j.actamat.2005.05.004
55. Frenzel J., Zhang Z., Neuking K., Eggeler G. High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles // Journal of Alloys and Compounds. 2004. V. 385, No.1–2. P. 214 – 223. URL: https://doi.org/10.1016/j.jallcom.2004.05.002
56. Nayan N., Govind B., Saikrishna C. N., et al. Vacuum induction melting of NiTi shape memory alloys in graphite crucible // Materials Science and Engineering: A. 2007. V. 465, No. 1–2. P. 44 – 48. URL: https://doi.org/10.1016/j.msea.2007.04.039
57. Kamyshnykova K., Lapin J. Vacuum induction melting and solidification of TiAl-based alloy in graphite crucibles // Vacuum. 2018. V. 154. P. 218 – 226. URL: https://doi.org/10.1016/j.vacuum.2018.05.017
58. Lui H., Shen B., Zhu M., et al. Reaction between Ti and boron nitride based investment shell molds used for casting titanium alloys // Rare Metals. 2008. V. 27, No. 6. P. 617 – 622. URL: https://doi.org/10.1016/S1001-0521(08)60193-X
59. Cheng X., Sun X. D., Yuan C., et al. An investigation of a TiAlO based refractory slurry face coat system for the investment casting of Ti–Al alloys // Intermetallics. 2012. V. 29. P. 61 – 69. URL: https://doi.org/10.1016/j.intermet.2012.05.005
60. Kim S. K., Kim T. K., Kim M. G., et al. Investment Casting of Titanium Alloys with CaO Crucible and CaZrO3 Mold // Lightweight Alloys for Aerospace Application. John Wiley & Sons, Inc Ed. 2001. V. 19. P. 251 – 260. URL: https://doi:10.1002/9781118787922.ch23.
61. Schaff?ner S., Qin T., Fruhstorfer J., et al. Refractory castables for titanium metallurgy based on calcium zirconate // Materials & Design. 2018. V. 148. P. 78 – 86. URL: https://doi.org/10.1016/j.matdes.2018.03.049
62. Klotz U. E., Legner C., Bulling F. Investment casting of titanium alloys with calcium zirconate moulds and crucibles // The International Journal of Advanced Manufacturing Technology. 2019. V. 103. P. 343 – 353.
63.Schaff?ner S., Fruhstorfer J., Fa?auer C., et al. Advanced refractories for titanium metallurgy based on calcium zirconate with improved thermomechanical properties // Journal of the European Ceramic Society. 2019. V. 39, No. 14. P. 4394 – 4403. URL: https://doi.org/10.1016/j.jeurceramsoc.2019.06.007
64. Li C. H., Gao Y. H., Lu X. G., et al. Interaction between the Ceramic CaZrO3 and the Melt of Titanium Alloys // Advances in Science and Technology. 2010. V. 70. P. 136 – 140. URL: https://doi.org/10.4028/www.scientific.net/AST.70.136
65. Lu M., Lin C., Su H., Wei S. Effect of CaZrO3 content on the interfacial phenomenon between titanium and zirconia at 1400 °C // Materials Science and Technology Conference and Exhibition. Columbus, OH, United States. 2011. P. 215 – 223.
66. Yang B., Zhu K.-L., Lu X., et al. Preparation of TiFe based alloy melted by CaZrO3 crucible and its hydrogen storage properties // Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering. 2012. V. 12, No. 5. P. 849 – 856.
67. Pat. CN 1420103. Method for producing electric smelting calcium zirconate / Q. Li. Song. 2003. Application 27.12.2001, Publication 28.05.2003.
68. Schaff?ner S., Aneziris C. G., Berek H., et al. Investigating the corrosion resistance of calcium zirconate in contact with titanium alloy melts // Journal of the European Ceramic Society. 2015. V. 35 P. 259 – 266. URL: doi:10.1016/j.jeurceramsoc.2014.08.031
69. Schaffoner S., Aneziris C. G., Berek H., et al. Corrosion behavior of calcium zirconate refractories in contact with titanium aluminide melts // Journal of the European Ceramic Society. 2015. V. 35, No. 3. P. 1097 – 1106. URL: https://doi.org/10.1016/j.jeurceramsoc.2014.09.032
70. Yuan C., Cheng X., Withey P. A. Investigation into the use of CaZrO3 as a facecoat material in the investment casting of TiAl alloys // Materials Chemistry and Physics.2015. V. 155. P. 205 – 210. URL: https://doi.org/10.1016/j.matchemphys.2015.02.026
71. Freitag L., Schaff?ner S., Lippert N., et al. Silica-free investment casting molds based on calcium zirconate // Ceramics International. 2017. V. 43, No. 9. P. 6807 – 6814. URL: https://doi.org/10.1016/j.ceramint.2017.02.098
72. Freitag L., Schaff?ner S., Fa?auer C., Aneziris C. G. Functional coatings for titanium casting molds using the replica technique // Journal of the European Ceramic Society.2018. V. 38, No. 13. P. 4560 – 4567. URL: https://doi.org/10.1016/j.jeurceramsoc.2018.05.020.
73. Song Q., Liang T., Qian K., et al. Corrosion resistance of calcium zirconate crucible to titanium-copper melts // Journal of the European Ceramic Society. 2022. V. 42, No. 7. P. 3321 – 3331. URL: https://doi.org/10.1016/j.jeurceramsoc.2022.02.011
Красный Б. Л., Макаров Н. А., Иконников К. И., Лемешев Д. О., Бернт Д. Д., Галганова А. Л., Сизова А. С., Родимов О. И. Цирконат кальция, способы синтеза и области применения керамических и огнеупорных материалов на его основе (обзор). Часть 2. Области применения керамических и огнеупорных материалов на основе цирконата кальция // Стекло и керамика. 2024. Т. 97, № 2. С. 40 – 46. DOI: 10.14489/glc.2024.02.pp.040-046