Ежемесячный научно-технический и производственный журнал

ISSN 0131-9582

  • Сквозной номер выпуска: 1154
  • Страницы статьи: 40-46
  • Поделиться:

Рубрика: Без рубрики

Представлены общие сведения o цирконате кальция и физико-химических характеристиках изделий на его основе. Рассмотрены основные области применения керамических и огнеупорных материалов на основе CaZrO3.

Борис Лазаревич Красный – д-р техн. наук, генеральный директор ООО «НТЦ «Бакор», Москва, Россия
Николай Александрович Макаров – д-р техн. наук, профессор, заведующий кафедрой химической технологии керамики и огнеупоров, Российский химико-технологический университет им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россия
Константин Игоревич Иконников – канд. техн. наук, руководитель исследовательского центра специальной керамики ООО «НТЦ «Бакор», Москва, Россия
Анна Львовна Галганова – заместитель начальника исследовательского центра специальной керамики ООО «НТЦ «Бакор», Москва, Россия
Дмитрий Олегович Лемешев – канд. техн. наук, доцент кафедры химической технологии керамики и огнеупоров, декан факультета технологии неорганических веществ и высокотемпературных материалов, Российский химико-технологический университет им. Д. И. Менделеева (РХТУ им. Д. И. Менделеева), Москва, Россия
Дмитрий Дмитриевич Бернт – канд. физ.-мат. наук, ученый секретарь ООО «НТЦ «Бакор», Москва, Россия
Олег Игоревич Родимов – научный сотрудник ООО «НТЦ «Бакор», Москва, Россия

1. Красный Б. Л., Макаров Н. А., Иконников К. И. и др. Цирконат кальция, способы синтеза и области применения керамических и огнеупорных материалов на его основе (обзор). Часть I: способы синтеза цирконата кальция // Стекло и керамика. 2023. Т. 96, № 12. С. 51 – 60.
2. Rog G., Dudek M., Kozlowska-Rog A., Bucko M. Calcium zirconate: preparation, properties and application to the solid oxide galvanic cells // Electrochimica Acta. 2002. V. 47, No. 28. P. 4523 – 4529. URL: https://doi.org/10.1016/S0013-4686(02)00540-6
3. Dudek M., R?g G., Bogusz W. Calcium zirconate as a solid electrolyte for electrochemical devices applied in metallurgy // Materials science-Poland. 2006. V. 24, No. 1. P. 253 – 260.
4. Janke D. Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts // Metallurgical Transactions B. 1982. V. 13, No. 2. P. 227 – 235.
5. Yajima T., Kazcoka H., Yogo T., Iwahara H. Proton conduction in sintered oxides based on CaZrO3 // Solid State Ionics. 1991. V. 47, No. 3–4. P. 271 – 275.
6. Dunyushkina A., Sh Khaliullina A., Meshcherskikh A. N., Pankratov A. A. Sintering and conductivity of Sc-doped CaZrO3 with Fe2O3 as a sintering aid // Ceramics International. 2021. V. 75, No. 11. P. 3040 – 3048. URL: https://doi.org/10.1016/j.ceramint.2020.12.168
7. Wang C., Xu X., Yu H., et al. A study of the solid electrolyte Y2O3-doped CaZrO3 // Solid State Ionics. 1988. V. 28 – 30. P. 542 – 545. URL: https://doi.org/10.1016/S0167-2738(88)80099-7
8. Yajima T., Koide K., Takai H., et al. Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries // Solid State Ionics. 1995. V. 79. P. 333 – 337. URL: https://doi.org/10.1016/0167-2738(95)00083-I
9. Pollet M., Daturi M., Marinel S. Vibrational spectroscopy study of the lattice defects in CaZrO3 ceramics // Journal of the European Ceramic Society. 2004. V. 24, No. 6. P. 1805 – 1809. URL: https://doi.org/10.1016/S0955-2219(03)00512-0
10. Prasanth C. S., Kumar H. P., Pazhani R., et al. Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics // Journal of Alloys and Compounds. 2008. V. 464, No. 1–2. P. 306 – 309. URL: https://doi.org/10.1016/j.jallcom.2007.09.098
11. Красный Б. Л., Иконников К. И., Галганова А. Л., Родимов О. И. Синтез и спекание огнеупорного цирконата кальция для высокотемпературной службы в контакте с титаном и сплавами на его основе // Цветные металлы. 2022. № 1. С. 49 – 55. URL: https://doi.org/ 10.17580/tsm.2022.01.06
12. Yu T., Zhu W., Chen C., et al. Preparation and characterization of sol-gel derived CaZrO3 dielectric thin films for high-k applications // Physica B. 2004. V. 348, No. 1 – 4. P. 440 – 445. URL: https://doi.org/10.1016/j.physb.2004.01.147
13. Qiu X. Y., Liu H. W., Fang F. F., et al. Thermal stability and dielectric properties of ultrathin CaZrOx films prepared by pulsed laser deposition // Applied Physics A. 2005. V. 81, No. 7. P. 1431 – 1434.
14. Qiu X .Y., Liu H. W., Fang F., et al. Interfacial properties of high-k dielectric CaZrOx films deposited by pulsed laser deposition // Applied Physics Letters. 2006. V. 88, No. 18. Art. 182907. URL: https://doi.org/10.1063/1.2200750
15. Резницкий Л. А., Гузей А. С. Термодинамические свойства титанатов, цирконатов и гафнатов щелочноземельных металлов // Успехи химии, выпуск 2. 1978. Т. XLVII. С. 177 – 211.
16. Kozuka H., Kajita Y., Tuchiya Y., Honda T., Ohta S. New kind of chrome-free (MgO–CaO–ZrO2) bricks for burning zone of rotary cement kiln // Proceedings of Unified International Technical Conference on Refractories. Sao Paulo. 1993. P. 1027 – 1037.
17. Kozuka H., Kajita Y., Tokunaga K., et al. Further improvements of MgO–CaO–ZrO2 bricks for burning zone of rotary cement kiln // UNITECR 95 Proceedings, Ed. by The Technical Association of Refractories. Japan. Kyoto. 1995. P. 256 – 263.
18. Rodriguez J. L., Baudin C., Pena P. Relationships between phase constitution and mechanical behaviour in MgO–CaZrO3-calcium silicate materials // Journal of the European Ceramic Society. 2004. V. 24, No. 4. P. 669 – 679. URL: https://doi.org/10.1016/S0955-2219(03)00268-1
19. Serena S., Sainz M. A., de Aza S., Caballero A. Thermodynamic assessment of the system ZrO2–CaO–MgO using new experimental results // Journal of the European Ceramic Society. 2005. V. 25, No. 5. P. 681 – 693. URL: https://doi.org/10.1016/j.jeurceramsoc.2004.02.011
20. Serena S., Sainz M. A., Caballero A. The system Clinker–MgO–CaZrO3 and its application to the corrosion behavior of CaZrO3/MgO refractory matrix by clinker // Journal of the European Ceramic Society. 2009. V. 29, No. 11.P. 2199 – 2209. URL: https://doi.org/10.1016/j.jeurceramsoc.2009.01.015
21. Rodriguez-Galicia J., de Aza A. H., Rendon Angeles J. C., Pena P. The Mechanism of corrosion of MgOCaZrO3-calcium silicate materials by cement clinker // Journal of the European Ceramic Society. 2007. V. 27, No. 1. P. 79 – 89. URL: https://doi.org/10.1016/j.jeurceramsoc.2006.01.014
22. Obregon ?., Rodriguez-Galicia J. L., Lopez-Cuevas J, et al. MgO–CaZrO3-based refractories for cement kilns // Journal of the European Ceramic Society. 2011. V. 31, No. 1–2. P. 61 – 74. URL: https://doi.org/10.1016/j.jeurceramsoc.2010.08.020
23. Lang J.-F., You J.-G., Zhang X.-F., et al. Effect of MgO on thermal shock resistance of CaZrO3 ceramic Ceramics International. 2018. V. 44, No. 18. P. 22176 – 22180. URL: https://doi.org/10.1016/j.ceramint.2018.08.333
24. Szczerba J. Chemical corrosion of basic refractories by cement kiln materials // Ceramics International. 2010. V. 36, No. 6. P. 1877 – 1885. URL: https://doi.org/10.1016/j.ceramint.2010.03.019
25. Szczerba J., Sniezek E., Antonovic V. Evolution of refractory materials for rotary cement kiln sintering zone // Refractories and Industrial Ceramics. 2017. V. 58, No. 4. P. 426 – 433.
26. Contreras J. E., Castillo G. A., Rodriguez E. A., et al. Microstructure and properties of hercynite–magnesia–calcium zirconate refractory mixtures // Materials Characterization. 2005. V. 54, No. 4–5. P. 354 – 359. URL: https://doi.org/10.1016/j.matchar.2004.12.005
27. Rodr?guez E., Castillo G.-A., Contreras J., et al. Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO–CaZrO3 refractory brick for the cement industry // Ceramics International. 2012. V. 38, No. 8. P. 6769 – 6775. URL: https://doi.org/10.1016/j.ceramint.2012.05.071
28. Du Y., Jin Z., Huang P. Thermodynamic calculation of the zirconia-calcia system // Journal of the American Ceramic Society. 1992. V. 75, No. 11. P. 3040 – 3048. URL: https://doi.org/10.1111/j.1151-2916.1992.tb04384.x
29.Kim S. K., Hong T., Kim Y.-J. Evaluation of thermal stability of mold materials for magnesium investment casting // Materials transactions. 2001. V. 42, No. 3. P. 539 – 542. URL: https://doi.org/10.2320/matertrans.42.539
30. Li M., Gehre P., C. G. Aneziris. Investigation of calcium zirconate ceramic synthesized by slip casting and calcinations // J. Eur. Ceram. Soc. 2013. V. 33, No. 10. P. 2007 – 2012.
31. Li M. Development of calcium zirconate castables based on slip casted raw material for gasifier: Technische Universit?t Bergakademie Freiberg, Freiberg. 2018. P. 121.
32. Fashu S., Lototskyy M., Davids M. W., et al. A review on crucibles for induction melting of titanium alloys // Materials & Design. 2020. V. 186. Art. 108295. URL: https://doi.org/10.1016/j.matdes.2019.108295
33. Schaff?ner S. Reactions of alkaline earth zirconate refractories with titanium alloys // MATEC Web of Conferences. 2020. V. 321, No. 10012. P. 1 – 11. URL: https://doi.org/10.1051/matecconf/202032110012
34. Mitchell A. Melting and refining of superalloys and titanium alloys // ISIJ Int. 1992. V. 32, No. 5. P. 557 – 562. URL: https://doi.org/10.2355/isijinternational.32.557
35. Valencia J. J., Quested P. N. Thermophysical properties // Handbook. Casting. ASM international. Ohio. 2008. V. 15. P 468 – 481.
36. Lutjering G., Williams J. C. Titanium: Springer-Verlag, Berlin, Heidelberg, 2007. P. 442.
37. Banerjee D., Williams J. C. Perspectives on Titanium Science and Technology // Acta Materialia. 2013. V. 61, No. 3. P. 844 – 879. URL: https://doi.org/10.1016/j.actamat.2012.10.043
38. Pat. US 2205854A. Method for manufacturing titanium and alloys thereof / W. Kroll. 1940. Application 06.07.1938, Publication 25.06.1957.
39. Li B.-S., Liu A.-H., Nan H., et al. Wettability of TiAl alloy melt on ceramic moulds in electromagnetic field // Transactions of Nonferrous Metals Society of China. 2008. V. 18, No. 3. P. 518 – 522. URL: https://doi.org/10.1016/S1003-6326(08)60091-6
40. Wei J. W., Han B. Q., Wang X. C. Improvement in hydration resistance of CaO granules based on CaO–TiO2, CaO–ZrO2 and CaO–V2O5 systems // Mater. Chem.. 2020. V. 254. Art. 123413. URL: https://doi.org/10.1016/j.matchemphys.2020.123413
41. Nadachowski F. Refractories based on lime: development and perspectives // Ceramurgia International. 1976. V. 2, No. 2. P. 55 – 61. URL: https://doi.org/10.1016/0390-5519(76)90046-6
42. Kawano F., Yamoto I., Nomura J., et al. CaO Clinker with Improved Anti-Hydration Property // Taikabutsu Overseas. 1991. V. 11, No. 3. P. 29 – 36.
43. Wong L. L., Bradt R. C. Lime refractories with limestone and synthetic calcium hydroxide additions // Journal of the American Ceramic Society. 1995. V. 78, No. 6. P. 1611 – 1616. URL: https://doi.org/10.1111/j.1151-2916.1995.tb08859.x
44. Chen M., Yamaguchi A. Sintering of CaO–ZrO2 composite and its property of slaking resistance // Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi. 2002. V. 110, No. 1288. P. 1058 – 1061. URL: https://doi.org/10.2109/jcersj.110.1058
45. Chen M., Wang N., Yu J., Yamaguchi A. Oxidation protection of CaO–ZrO2–C refractories by addition of SiC // Ceramics International. 2007. V. 33, No. 8. P. 1585 – 1589. URL: https://doi.org/10.1016/j.ceramint.2006.07.004
46. Chen M., Lu C., Yu J. Improvement in performance of MgO–CaO refractories by addition of nano-sized ZrO2 // Journal of the European Ceramic Society. 2007. V. 27, No. 16. P. 4633 – 4638. URL: https://doi.org/10.1016/j.jeurceramsoc.2007.04.001
47. Gomes F., Barbosa J. J., Ribeiro C. S. Induction melting of ?-TiAl in CaO crucibles // Intermetallics. 2008. V. 16, No. 11–12. P. 1292 – 1297.
48. Li Z., Zhang S., Lee W. E. Improving the hydration resistance of lime-based refractory materials // International Materials Reviews. 2008. V. 53, No. 1. P. 1 – 20. URL: https://doi: 10.1179/174328007X212508
49. Ghasemi-Kahrizsangi S., Nemati A., Shahraki A., Farooghi M. Densification and properties of Fe2O3 nanoparticles added CaO refractories // Ceramics International. 2016. V. 42, No. 10. P. 12270 – 12275. URL: https://doi.org/10.1016/j.ceramint.2016.04.173
50. Lapin J., Gabalcov? Z., Pelachov? T. Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti–46Al–8Nb alloy // Intermetallics. 2011. V. 19, No. 3. P. 396 – 403. URL: https://doi.org/10.1016/j.intermet.2010.11.007
51. Zhang H., Tang X., Zhou C., Zhang S. Comparison of directional solidification of ?-TiAl alloys in conventional Al2O3 and novel Y2O3-coated Al2O3 crucibles // Journal of the European Ceramic Society. 2013. V. 33, No. 5. P. 925 – 934.
52. Sahu J. K., Chaudhuri S. K., Prasad B. Development of alumina clogging resistance nozzles for continuous casting of steel // Proceedings of Unified International Technical Conference on Refractories. Ed. by M. A. Stett. 1997. P. 1435 – 1440.
53. Jia Q., Cui Y. Y., Yang R. Intensified interfacial reactions between gamma titanium aluminide and CaO stabilised ZrO2 // International Journal of Cast Metals Research. 2004. V. 17, No. 1. P. 23 – 28. URL: https://doi/abs/10.1179/136404604225014800
54. Zhang Z., Frenzel J., Neuking K., Eggeler G. On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys // Acta Materialia. 2005. V. 53, No. 14. P. 3971 – 3985. URL: https://doi.org/10.1016/j.actamat.2005.05.004
55. Frenzel J., Zhang Z., Neuking K., Eggeler G. High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles // Journal of Alloys and Compounds. 2004. V. 385, No.1–2. P. 214 – 223. URL: https://doi.org/10.1016/j.jallcom.2004.05.002
56. Nayan N., Govind B., Saikrishna C. N., et al. Vacuum induction melting of NiTi shape memory alloys in graphite crucible // Materials Science and Engineering: A. 2007. V. 465, No. 1–2. P. 44 – 48. URL: https://doi.org/10.1016/j.msea.2007.04.039
57. Kamyshnykova K., Lapin J. Vacuum induction melting and solidification of TiAl-based alloy in graphite crucibles // Vacuum. 2018. V. 154. P. 218 – 226. URL: https://doi.org/10.1016/j.vacuum.2018.05.017
58. Lui H., Shen B., Zhu M., et al. Reaction between Ti and boron nitride based investment shell molds used for casting titanium alloys // Rare Metals. 2008. V. 27, No. 6. P. 617 – 622. URL: https://doi.org/10.1016/S1001-0521(08)60193-X
59. Cheng X., Sun X. D., Yuan C., et al. An investigation of a TiAlO based refractory slurry face coat system for the investment casting of Ti–Al alloys // Intermetallics. 2012. V. 29. P. 61 – 69. URL: https://doi.org/10.1016/j.intermet.2012.05.005
60. Kim S. K., Kim T. K., Kim M. G., et al. Investment Casting of Titanium Alloys with CaO Crucible and CaZrO3 Mold // Lightweight Alloys for Aerospace Application. John Wiley & Sons, Inc Ed. 2001. V. 19. P. 251 – 260. URL: https://doi:10.1002/9781118787922.ch23.
61. Schaff?ner S., Qin T., Fruhstorfer J., et al. Refractory castables for titanium metallurgy based on calcium zirconate // Materials & Design. 2018. V. 148. P. 78 – 86. URL: https://doi.org/10.1016/j.matdes.2018.03.049
62. Klotz U. E., Legner C., Bulling F. Investment casting of titanium alloys with calcium zirconate moulds and crucibles // The International Journal of Advanced Manufacturing Technology. 2019. V. 103. P. 343 – 353.
63.Schaff?ner S., Fruhstorfer J., Fa?auer C., et al. Advanced refractories for titanium metallurgy based on calcium zirconate with improved thermomechanical properties // Journal of the European Ceramic Society. 2019. V. 39, No. 14. P. 4394 – 4403. URL: https://doi.org/10.1016/j.jeurceramsoc.2019.06.007
64. Li C. H., Gao Y. H., Lu X. G., et al. Interaction between the Ceramic CaZrO3 and the Melt of Titanium Alloys // Advances in Science and Technology. 2010. V. 70. P. 136 – 140. URL: https://doi.org/10.4028/www.scientific.net/AST.70.136
65. Lu M., Lin C., Su H., Wei S. Effect of CaZrO3 content on the interfacial phenomenon between titanium and zirconia at 1400 °C // Materials Science and Technology Conference and Exhibition. Columbus, OH, United States. 2011. P. 215 – 223.
66. Yang B., Zhu K.-L., Lu X., et al. Preparation of TiFe based alloy melted by CaZrO3 crucible and its hydrogen storage properties // Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering. 2012. V. 12, No. 5. P. 849 – 856.
67. Pat. CN 1420103. Method for producing electric smelting calcium zirconate / Q. Li. Song. 2003. Application 27.12.2001, Publication 28.05.2003.
68. Schaff?ner S., Aneziris C. G., Berek H., et al. Investigating the corrosion resistance of calcium zirconate in contact with titanium alloy melts // Journal of the European Ceramic Society. 2015. V. 35 P. 259 – 266. URL: doi:10.1016/j.jeurceramsoc.2014.08.031
69. Schaffoner S., Aneziris C. G., Berek H., et al. Corrosion behavior of calcium zirconate refractories in contact with titanium aluminide melts // Journal of the European Ceramic Society. 2015. V. 35, No. 3. P. 1097 – 1106. URL: https://doi.org/10.1016/j.jeurceramsoc.2014.09.032
70. Yuan C., Cheng X., Withey P. A. Investigation into the use of CaZrO3 as a facecoat material in the investment casting of TiAl alloys // Materials Chemistry and Physics.2015. V. 155. P. 205 – 210. URL: https://doi.org/10.1016/j.matchemphys.2015.02.026
71. Freitag L., Schaff?ner S., Lippert N., et al. Silica-free investment casting molds based on calcium zirconate // Ceramics International. 2017. V. 43, No. 9. P. 6807 – 6814. URL: https://doi.org/10.1016/j.ceramint.2017.02.098
72. Freitag L., Schaff?ner S., Fa?auer C., Aneziris C. G. Functional coatings for titanium casting molds using the replica technique // Journal of the European Ceramic Society.2018. V. 38, No. 13. P. 4560 – 4567. URL: https://doi.org/10.1016/j.jeurceramsoc.2018.05.020.
73. Song Q., Liang T., Qian K., et al. Corrosion resistance of calcium zirconate crucible to titanium-copper melts // Journal of the European Ceramic Society. 2022. V. 42, No. 7. P. 3321 – 3331. URL: https://doi.org/10.1016/j.jeurceramsoc.2022.02.011

Статью можно приобрести
в электронном виде!

PDF формат

500

DOI: 10.14489/glc.2024.02.pp.040-046
Тип статьи: Обзор
Оформить заявку

Ключевые слова

Для цитирования статьи

Красный Б. Л., Макаров Н. А., Иконников К. И., Лемешев Д. О., Бернт Д. Д., Галганова А. Л., Сизова А. С., Родимов О. И. Цирконат кальция, способы синтеза и области применения керамических и огнеупорных материалов на его основе (обзор). Часть 2. Области применения керамических и огнеупорных материалов на основе цирконата кальция // Стекло и керамика. 2024. Т. 97, № 2. С. 40 – 46. DOI: 10.14489/glc.2024.02.pp.040-046