Представлен обзор диэлектрических керамических материалов с высокими (более 10 000) значениями относительной диэлектрической проницаемости. Бо?льшая часть составов этих материалов базируется на системах, включающих в себя сегнетоэлектрические материалы, твердые растворы на их основе и несегнетоэлектрические компоненты. Рассмотрены различные подходы к увеличению диэлектрической проницаемости материалов: допирование, атмосфера спекания, время помола, температура спекания, размер зерна. Проведено сравнение влияния допантов и метода синтеза на значение характеристик конденсаторных керамик, которые могут использоваться в низкочастотном и высокочастотном диапазонах.
Сергей Григорьевич Пономарев – науч. сотрудник, канд. физ.-мат наук, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
Виктория Евгеньевна Базарова – инженер, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
Иван Дмитриевич Акиньшин – инженер, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
Антон Георгиевич Муштаков – инженер, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
Максим Витальевич Корнюшин – мл. науч. сотрудник, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
Виталий Михайлович Коломин – мл. науч. сотрудник, лаборатория керамических материалов, АО «НПП «Исток» им. Шокина», Фрязино, Россия
Никита Сергеевич Карасев – науч. сотрудник, канд. хим. наук, лаборатория керамических материалов, АО «НПП «Исток» им. Шокина», Фрязино, Россия
Дмитрий Александрович Соколов – мл. науч. сотрудник, лаборатория керамических материалов, АО «НПП «Исток» им. Шокина», Фрязино, Россия
Андрей Владимирович Смирнов – заведующий лабораторией керамических материалов и технологий, канд. техн. наук, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
1. Moulson A. J., Herbert J. M. Electroceramics: materials, properties, applications. 2nd ed. New York: Wiley, 2003. 576 p.
2. Ротенберг Б. А. Керамические конденсаторные диэлектрики: монография. СПб.: Типография ОАО НИИ Гириконд, 2000. 246 с.
3. Randall C. A., Newnham R. E., Cross L. E. History of the first ferroelectric oxide, BaTiO3 // Materials Research Institute, The Pennsylvania State University, University Park, Pa, USA. 2004. V. 1. P. 11.
4. Abel S., Caimi D., Sousa M., et al. Electro-optical properties of barium titanate films epitaxially grown on silicon // Oxide-based Materials and Devices III. SPIE, 2012. V. 8263. P. 82630Y.
5. Li W. B., Zhou D., Xu R., et al. BaTiO3-based multilayers with outstanding energy storage performance for high temperature capacitor applications // ACS Appl Energy Mater. American Chemical Society. 2019. V. 2, No. 8. P. 5499 – 5506.
6. Choi K. J., Biegalski M., Li Y. L., et al. Enhancement of ferroelectricity in strained BaTiO3 thin films // Science (1979). 2004. V. 306, No. 5698. P. 1005 – 1009.
7. Patil R. P., More P. V., Jain G. H., et al. BaTiO3 nanostructures for H2S gas sensor: Influence of band-gap, size and shape on sensing mechanism // Vacuum. Elsevier Ltd. 2017. V. 146. P. 455 – 461.
8. Patil R. P., Gaikwad S. S., Karanjekar A. N., et al. Optimization of strontium-doping concentration in BaTiO3 nanostructures for room temperature NH3 and NO2 gas sensing // Mater Today Chem. Elsevier Ltd. 2020. V. 16. P. 100240 – 100247.
9. El-Sayet A. M., Ismail F. M., Yakout S. M. Electrical conductivity and sensitive characteristics of Ag-added BaTiO3–CuO mixed oxide for CO2 gas sensing // J Mater Sci Technol. 2011. V. 27, No. 1. P. 35 – 40.
10. Pan M. J., Randall C. A brief introduction to ceramic capacitors // IEEE Electrical Insulation Magazine. 2010. V. 26, No. 3. P. 44 – 50.
11. Smith M. B. Page K., Siegrist T., et al.Crystal structure and the paraelectric-t-ferroelectric phase transition of nanoscale BaTiO3 // J Am Chem Soc. 2008. V. 130, No. 22. P. 6955 – 6963.
12. Randall C. A., Yousefian P. Fundamentals and practical dielectric implications of stoichiometry and chemical design in a high-performance ferroelectric oxide: BaTiO3 // J Eur Ceram Soc. 2022. V. 42, No. 4. P. 1445 – 1473.
13. Pradhan S., Roy G. S. Study the crystal structure and phase transition of BaTiO3-a pervoskite // Researcher. 2013. V. 5, No. 3. P. 63 – 67.
14. Tewatia K., Sharma A., Sharma M., Kumar A. Factors affecting morphological and electrical properties of barium titanate: a brief review // Materials Today: Proceedings. 2020. V. 44. P. 4548 – 4556.
15. Ghosh D., Sakata A., Carter J., et al. Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes // Adv Funct Mater. 2014. V. 24, No. 7. P. 885 – 896.
16. Zhou Z., Lin Y., Tang H., Sodano H. A., et al. Hydrothermal growth of highly textured BaTiO3 films composed of nanowires // Nanotechnology. 2013. V. 24, No. 9. P. 095602 – 095609.
17. Han H., Voisin C., Guillemet-Fritsch S., et al. Origin of colossal permittivity in BaTiO3 via broadband dielectric spectroscopy // J Appl Phys. 2013. V. 113, No. 2. P. 024102 – 024110.
18. Sun Q., Gu Q., Zhu K., et al. Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate // Sci Rep. Nature Publishing Group. 2017. V. 7. P. 42274 – 42281.
19. Guillemet S., Nava Z. V., Tenailleau C., et al. Colossal permittivity in ultrafine grain size BaTiO3–x and Ba0.95La0.5TiO3-x materials // Advanced Materials. 2008. V. 20, No. 3. P. 551 – 555.
20. Meng Y., Liu K., Zhang X., Lei X., et al. Defect engineering in rare-earth-doped BaTiO3 ceramics: route to high-temperature stability of colossal permittivity // Journal of the American Ceramic Society. John Wiley and Sons Inc. 2022. V. 105, No. 9. P. 5725 – 5737.
21. V’yunov O., Reshytko B., Belous A., Kovalenko L. Contribution of nanointerfaces to colossal permittivity of doped Ba(Ti, Sn)O3 ceramics // Applied Nanoscience (Switzerland). Springer Nature. 2019. V. 9, No. 5. P. 767 – 773.
22. Maity S., Sasmal A., Sen S. Comprehensive characterization of Ba1?xSrxTiO3: correlation between structural and multifunctional properties // J Alloys Compd. Elsevier Ltd. 2021. V. 884. P. 161072 – 161082.
23. Li L., Wang R., Yu S., et al. Novel tin-doped BaTiO3 ceramics with non-reducibility and colossal dielectric constant // Mater Lett. Elsevier B. V. 2018. V. 220. P. 119 – 121.
24. Zhang K., Li L., Wang M., et al. The self-compensation mechanism in barium titanate ceramics with colossal permittivity // J Alloys Compd. Elsevier Ltd. 2021. V. 851. P. 156856 – 156863.
25. Shen Z. J., Bing L. N. Colossal permittivity observed in yttrium doped BaTiO3 // Adv Mat Res. Trans Tech Publications, Ltd. 2015. V. 1096. P. 360 – 365.
26. Luo B. Wang X., Tian E., et al.Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: Experimental and first-principles calculations // J Eur Ceram Soc. Elsevier Ltd. 2018. V. 38, No. 4. P. 1562 – 1568.
27. Nurmi K., Jantunen H., Juuti J. The effect of titanium excess and deficiency on the microstructure and dielectric properties of lanthanum doped Ba0.55Sr0.45TiO3 with colossal permittivity // J Eur Ceram Soc. Elsevier Ltd. 2019. V. 39, No. 4. P. 1110 – 1115.
28. Wu Y. J., Su Sh. H., Cheng J. P., Chen Xi. M. Spark plasma sintering of barium zirconate titanate/carbon nanotube composites with colossal dielectric constant and low dielectric loss // Journal of the American Ceramic Society. 2011. V. 94, No. 3. P. 663 – 665.
29. Li T., Yang K., Xue R., et al. The effect of CuO doping on the microstructures and dielectric properties of BaTiO3 ceramics // Journal of Materials Science: Materials in Electronics. 2011. V. 22. P. 838 – 842.
30. Chaudhari V. A., Bichile G. K. Synthesis, structural, and electrical properties of Pure PbTiO3 ferroelectric ceramics // Smart Materials Research. Hindawi Limited. 2013. V. 2013. P. 1 – 9.
31. Palkar V. R., Purandare S. C., Pinto R. Ferroelectric thin films of PbTiO3 on silicon // J. Phys. D: Appl. Phys. 1999. V. 32. P. 1 – 18.
32. Bhatti H. S., Hussain S. T., Khan F. A., et al. Synthesis and induced multiferroicity of perovskite PbTiO3: a review // Appl Surf Sci. Elsevier B. V. 2016. V. 367. P. 291 – 306.
33. Meyer B., Padilla J., Vanderbilt D. Theory of PbTiO3, BaTiO3, and SrTiO3 surfaces // Faraday Discussions. The Royal Society of Chemistry. 1999. V. 114. P. 395 – 405.
34. Kaur R., Sharma V., Kumar M., et al. Conductivity relaxation in Pb0.9Sm0.10Zr0.405Ti0.495Fe0.10O3 solid solution // J Alloys Compd. Elsevier Ltd. 2018. V. 735. P. 1472 – 1479.
35. Ur?i? H., Bencan A., Khomyakova E., et al. Pb(Mg, Nb)O3–PbTiO3 thick films on metalized low-temperature co-fired ceramic substrates // MIDEM Society Journal of Microelectronics, Electronic Components and Materials. 2017. V. 47, No. 2. P. 71 – 78.
36. Duan N., ten Elshof E., Verweij H., et al. Enhancement of dielectric and ferroelectric properties by addition of Pt particles to a lead zirconate titanate matrix // Appl Phys Lett. American Institute of Physics Inc. 2000. V. 77, No. 20. P. 3263 – 3265.
37. Li J. F., Takagi K., Terabuko N., et al. Electrical and mechanical properties of piezoelectric ceramic/metal composites in the Pb(Zr, Ti)О3/Pt system // Appl Phys Lett. 2001. V. 79, No. 15. P. 2441 – 2443.
38. Hwang H. J., Watari K., Sando M., et al. Low-temperature sintering and high-strength Pb(Zr, Ti)O3-matrix composites incorporating silver particles // J. Am. Ceram. Soc. 1997. P. 80 – 83.
39. Bobnar V., Hrovat M., Holc J., et al. Colossal dielectric response in all-ceramic percolative composite 0.65Pb (Mg1/3Nb2/3)O3–0.35PbTiO3–Pb2Ru2O6.5 // J Appl Phys. 2009. V. 105, No. 3. P. 034108 – 034113.
40. Tu C. S., Tseng C. T., Chien R. R., et al. Nanotwin and phase transformation in tetragonal Pb(Fe1/2Nb1/2)1–xTixO3 single crystal // J Appl Phys. 2008. V. 104, No. 5. P. 054106 – 054110.
41. Prosandeev S., Raevski I., Malitskaya M., et al. Condensation of the atomic relaxation vibrations in lead-magnesium-niobate at T = T*// J Appl Phys. American Institute of Physics Inc. 2013. V. 114, No. 12. P. 124103 – 124112.
42. Li F., Lin D., Chen Z., et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design // Nat Mater. Nature Publishing Group. 2018. V. 17, No. 4. P. 349 – 354.
43. Dylla M. T., Kuo J. J., Witting I., Snyder G. J. Grain boundary engineering nanostructured SrTiO3 for thermoelectric applications // Advanced Materials Interfaces. 2019. V. 6, No. 15. P. 1900222.
44. Hu Y., Tan O. K., Pan J. S., Yao X. A new form of nanosized SrTiO3 material for near-human-body temperature oxygen sensing applications // The Journal of Physical Chemistry B. 2004. V. 108. No. 30. P. 11214 – 11218.
45. Aravinthkumar K., Praveen E., Mary A. J. R., Mohan C. R. Investigation on SrTiO3 nanoparticles as a photocatalyst for enhanced photocatalytic activity and photovoltaic applications // Inorganic Chemistry Communications. 2022. V. 140. P. 109451.
46. Shende R. V., Krueger D. S., Rossetti G. A., Lombardo S. J. Strontium zirconate and strontium titanate ceramics for high?voltage applications: synthesis, processing, and dielectric properties // Journal of the American Ceramic Society. 2001. V. 84, No. 7. P. 1648 – 1650.
47. Wang S., Kawase A., Ogawa H. Preparation and characterization of multilayer capacitor with SrTiO3 thin films by aerosol chemical vapor deposition // Japanese journal of applied physics. 2006. V. 45, No. 9S. P. 7252.
48. Hao S. E., Wang C. Y., Zhang J. S., et al. Preparation and characterization of La-doped Ba(1–x)SrxTiO3 powders and thin films // Thin Solid Films. 2010. V. 518. P. 5645 – 5648.
49. Muhamad N. F., Osman R. A. M., Idris M. S., Yasin M. N. M. Physical and electrical properties of SrTiO3 and SrZrO3 // EPJ Web of Conferences. EDP Sciences, 2017. V. 162. P. 01052.
50. Wong S. Y., Hassan J., Hashim M. Dielectric properties of strontium titanate in the 1 MHz to 1.5 GHz frequency regions // Solid State Science and Technology. 2009. V. 17, No. 1. P. 57 – 62.
51. Wong Y. J., Jumiah H., Hashim M., et al. Effect of milling time on microstructure, crystallite size and dielectric properties of SrTiO3 ceramic synthesized via mechanical alloying method // Advanced Materials Research. Trans Tech Publications Ltd, 2012. V. 364. P. 388 – 392.
52. Хасанов О. Л., Двилис Э. С., Бикбаева З. Г. и др. Методы компактирования и консолидации наноструктурных материалов и изделий: учебное пособие. Москва: Лаборатория знаний, 2020. С. 272.
53. Yan L. C., Hassan J., Hashim M., et al. Effect of sintering temperatures on the microstructure and dielectric properties of SrTiO3 // World Appl Sci J. 2011. V. 15. P. 1614 – 1618.
54. Wang Z., Cao M., Yao Z., et al. Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics // Ceramics International. 2014. V. 40, No. 1. P. 929 – 933.
55. Wang X., Hu Q., Zang G., et al. Structural and electrical characteristics of Sr/Ti nonstoichiometric SrTiO3 ceramics // Solid State Communications. 2017. V. 266. P. 1 – 5.
56. Tkach A., Okhay O., Almeida A., Vilarinho P. M. Giant dielectric permittivity and high tunability in Y-doped SrTiO3 ceramics tailored by sintering atmosphere // Acta Materialia. 2017. V. 130. P. 249 – 260.
57. Wang B., Pu Y., Shi Y., et al. Ultralow dielectric loss in Y?doped SrTiO3 colossal permittivity ceramics via designing defect chemistry // Journal of the American Ceramic Society. 2020. V. 103, No. 12. P. 6811 – 6821.
58. Guo X., Pu Y., Wang W., et al. High insulation resistivity and ultralow dielectric loss in La-doped SrTiO3 colossal permittivity ceramics through defect chemistry optimization // ACS Sustainable Chemistry & Engineering. 2019. V. 7, No. 15. P. 13041 – 13052.
59. Qin M., Gao F., Cizek J., et al. Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity // Acta Materialia. 2019. V. 164. P. 76 – 89.
60. Qi J., Cao M., Chen Y., et al. Cerium doped strontium titanate with stable high permittivity and low dielectric loss // Journal of Alloys and Compounds. 2019. V. 772. P. 1105 – 1112.
61. Qi J., Cao M., Chen Y., et al. Origin of high dielectric permittivity and low dielectric loss of Sr0.985Ce0.01TiO3 ceramics under different sintering atmospheres // Journal of Alloys and Compounds. 2019. V. 782. P. 51 – 58.
62. Wang X., Hu Q., Li L., Lu X. Effect of Pr substitution on structural and dielectric properties of SrTiO3 // Journal of Applied Physics. 2012. V. 112, No. 4. P. 044106.
63. Guo X., Pu Y., Wang W., et al. Defect chemistry and colossal dielectric behavior of Nd-modified SrTiO3 lead-free ceramic materials // Ceramics International. 2020. V. 46, No. 10. P. 16644 – 16652.
64. Liang F., Wen D., Fengang Z., Mingrong S. Effects of Gd substitution on microstructures and low temperature dielectric relaxation behaviors of SrTiO {sub 3} ceramics // Journal of Applied Physics. 2012. V. 112, No. 3. P. 034114.
65. Hu Q. G., Shen Z. Y., Li Y. M., et al. Enhanced energy storage properties of dysprosium doped strontium titanate ceramics // Ceramics International. 2014. V. 40, No. 1. P. 2529 – 2534.
66. Guo X., Pu Y., Ji J., et al. Colossal permittivity and high insulation resistivity in Dy-modified SrTiO3 lead-free ceramic materials with low dielectric loss // Ceramics International. 2020. V. 46, No. 8. P. 10075 – 10082.
67. Zhang X., Zhang J., Zhou Y., et al. Colossal permittivity and defect–dipoles contribution for Ho0.02Sr0.97TiO3 ceramics // Journal of Alloys and Compounds. 2018. V. 767. P. 424 – 431.
68. Pan W., Cao M., Hao H., et al. Defect engineering toward the structures and dielectric behaviors of (Nb, Zn) co-doped SrTiO3 ceramics // Journal of the European Ceramic Society. 2020. V. 40, No. 1. P. 49 – 55.
69. Guo X., Pu Y., Wang W., et al. Colossal permittivity and low dielectric loss in Ta doped strontium titanate ceramics by designing defect chemistry // Journal of Alloys and Compounds. 2020. V. 818. P. 152866.
70. Chen Y., Zeng Y., Cao W., et al. Colossal permittivity and low dielectric loss in (Li, Nb) co-doped SrTiO3 ceramics with high frequency and temperature stability // Ceramics International. 2022. V. 48, No. 24. P. 36393 – 36400.
71. Zhong B., Long Z., Yang C., et al. Colossal dielectric permittivity in c-doping SrTiO3 ceramics by Nb and Mg // Ceramics International. 2020. V. 46, No. 12. P. 20565 – 20569.
72. He Z., Cao M., Zhou L., et al. Origin of low dielectric loss and giant dielectric response in (Nb + Al) co?doped strontium titanate // Journal of the American Ceramic Society. 2018. V. 101, No. 11. P. 5089 – 5097.
73. Liu J., Liu Q., Nie Z., et al. Dielectric relaxations in fine-grained SrTiO3 ceramics with Cu and Nb co-doping // Ceramics International. 2019. V. 45, No. 8. P. 10334 – 10341.
74. Choudhury D., Mukherjee S., Mandal P., et al. Tuning of dielectric properties and magnetism of SrTiO3 by site-specific doping of Mn // Physical Review B. V. 84, No. 12. P. 125124.
75. Wang Z., Cao M., Yao Z., et al. Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere // Journal of the European Ceramic Society. 2014. V. 34, No. 7. P. 1755 – 1760.
76. Толкачева А. С., Павлова И. А. Технология керамики для материалов электронной промышленности: учебное пособие: в двух частях. Часть 1. Екатеринбург: Изд-во Уральского университета, 2019. С. 123.
77. Dulian P., B?k W., Wieczoek-Ciurowa K., Kajtoch C. Dielectric behaviour of BaTiO3–SrTiO3 solid solutions fabricated by high-energy ball milling // Key Engineering Materials. Trans Tech Publications Ltd. 2014. V. 605. P. 63 – 66.
78. Kim S. W., Choi H. I., Lee M. H., et al. Electrical properties and phase of BaTiO3–SrTiO3 solid solution // Ceramics International. 2013. V. 39. P. S487 – S490.
79. Zhao Z., Liang X., Zhang T., et al. Effects of cerium doping on dielectric properties and defect mechanism of barium strontium titanate glass-ceramics // Journal of the European Ceramic Society. 2020 V. 40, No. 3. P. 712 – 719.
80. Ha J. Y., Lin L., Jeong D. Y., et al. Improved figure of merit of (Ba, Sr) TiO3-based ceramics by Sn substitution // Japanese Journal of Applied Physics. 2009. V. 48, No. 1R. P. 011402.
81. Ha J. Y., Choi J. W., Kang C. Y., et al. Improvement of dielectric loss of (Ba, Sr)(Ti, Zr)O3 ferroelectrics for tunable devices // Journal of the European Ceramic Society. 2007. V. 27, No. 8–9. P. 2747 – 2751.
82. Puli V. S., Pradhan D. K., Riggs B. C., et al. Structure, ferroelectric, dielectric and energy storage studies of Ba0.70Ca0.30TiO3, Ba (Zr0.20Ti0.80)O3 ceramic capacitors // Integrated Ferroelectrics. 2014. V. 157, No. 1. P. 139 – 146.
83. Tan Y., Viola G., Koval V., et al. On the origin of grain size effects in Ba(Ti0.96Sn0.04)O3 perovskite ceramics // Journal of the European Ceramic Society. 2019. V. 39, No. 6. P. 2064 – 2075.
84. Suslov A. N., Durilin D. A., Ovchar O. V., et al. Synthesis and dielectric and nonlinear properties of BaTi1?xZrxO3 ceramics // Inorganic Materials. 2014. V. 50. P. 1125 – 1130.
85. Chitra, Chandramani Singh K. Nanopowders of (Ba, Ca)(Ti, Sn)O3 produced with planetary ball mill and corresponding ceramics // Integrated Ferroelectrics. 2018. V. 194, No. 1. P. 126 – 134.
86. Wang Y., Gao S., Wang T., et al. Structure, dielectric properties of novel Ba (Zr, Ti)O3 based ceramics for energy storage application // Ceramics International. 2020. V. 46, No. 8. P. 12080 – 12087.
87. Wang Q., Yan H. Z., Zhao X., Wang C. M. Polymorphic phase transition and piezoelectric performance of BaTiO3–CaSnO3 solid solutions // Actuators. MDPI, 2021. V. 10, No. 6. P. 129.
88. V’yunov O., Kovalenko L., Belous A. Synthesis and investigation of barium titanate stannate solid solution // Ukrainian Chemistry Journal. 2019. V. 85, No. 12. P. 75 – 83.
89. Chen M., Xu Z., Chu R., et al. Polymorphic phase transition and enhanced piezoelectric properties in (Ba0.9Ca0.1) (Ti1?xSnx)O3 lead-free ceramics // Materials Letters. V. 97. P. 86 – 89.
90. Chaiyo N., Cann D. P., Vittayakorn N. Lead-free (Ba, Ca)(Ti, Zr)O3 ceramics within the polymorphic phase region exhibiting large, fatigue-free piezoelectric strains // Materials & Design. 2017. V. 133. P. 109 – 121.
91. Kaddoussi H., Lahmar A., Gagou Y., et al. Indirect and direct electrocaloric measurements of (Ba1?xCax)(Zr0.1Ti0.9)O3 ceramics (x = 0.05, x = 0.20) // Journal of Alloys and Compounds. 2016. V. 667. P. 198 – 203.
92. Hayati R., Bahrevar M. A., Ganjkhanlou Y., et al. Electromechanical properties of Ce-doped (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead-free piezoceramics // Journal of Advanced Ceramics. 2019. V. 8. P. 186 – 195.
93. Cai E., Liu Q., Zeng F., et al. A comparative study of lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.08Sn0.02)O3 ceramics prepared by conventional sintering and microwave sintering techniques // Ceramics International. 2018. V. 44, No. 1. P. 788 – 798.
94. Kumar R., Singh I., Meena R., et al. Effect of La-doping on dielectric properties and energy storage density of lead-free Ba(Ti0.95Sn0.05)O3 ceramics // Materials Research Bulletin. 2020. V. 123. P. 110694.
95. Jayabal P., Sasirekha V., Mayandi J., et al. A facile hydrothermal synthesis of SrTiO3 for dye sensitized solar cell application // Journal of Alloys and Compounds. 2014. V. 586. P. 456 – 461.
96. Zhang Y., Sun M., Zhou X., et al. Polarization-induced photoluminescence variation in Pr3+-doped (Ba, Ca) (Ti, Sn)O3 ferroelectric ceramics // Journal of Materials Science: Materials in Electronics. 2021. V. 32, No. 17. P. 22398 – 22407.
97. Liu G., Li Y., Gao J., et al. Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics // Journal of Alloys and Compounds. 2020. V. 826. P. 154160.
98. Ismailzade I. G. X?ray investigation of phase transitions in certain laminar ferroelectrics // Inorganic Materials. 1967. No. 3. P. 1146 – 1148.
99. Subramanian M. A., Dong Li, N. Duan, et al. W. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases // Journal of Solid State Chemistry. 2000. V. 151, No. 2. P. 323 – 325.
100. Ramirez A. P., Subramanian M. A., Gardel M., et al. Giant dielectric constant response in a copper-titanate // Solid State Comm 115:217*. 2000. V. 115, No. 5. P. 217 – 220.
101. Homes C. C., Vogt T., Shapiro S. M., et al. Optical response of high-dielectric-constant perovskite-related oxide // Science. 2001. V. 293, No. 5530. P. 673 – 676.
102. Sinclair D., Adams T., Morrison F., West A. CaCu3Ti4O12: one-step internal barrier layer capacitor // App. Phys. Lett.2002. V. 80, No. 12. P. 2153 – 2155.
103. Xu L. F., Qi P. B., Chen S. S., et al. Dielectric properties of bismuth doped CaCu3Ti4O12 ceramics // Materials Science and Engineering B. 2012. V. 177. P. 494 – 498.
104. Rodrigo Espinoza-Gonz?lez, Edgar. Mosquera Influence of micro- and nanoparticles of zirconium oxides on the dielectric properties of CaCu3Ti4O12 // Ceramics International. 2017. V. 43. P. 14659 – 14665.
105. Chi Q. G., Gao L., Wanga X., et al. Effects of Zr doping on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics // Journal of Alloys and Compounds. 2013. V. 559. P. 45 – 48.
106. Dong Xu, Kai He, Renhong Yu, et al. High dielectric permittivity and low dielectric loss in solegel derived Zn doped CaCu3Ti4O12 thin films // Materials Chemistry and Physics. 2015. V. 153. P. 229 – 235.
107. Yanwei Huang, Yu Qiao, Yangyang Li, et al. Zn-doped calcium copper titanate synthesized via rapid laser sintering of so-gel derived precursors // Nanomaterials (Basel). 2020. V. 10, No. 6. P. 1163 – 1170.
108. Krissana P., Ekaphan S., Thanin P. Ultra-stable X9R type CaCu3–xZnxTi4O12 ceramics // Ceram. Int. 2018. V. 44. P. 20739.
109. Xu C., Zhao X., Ren L., et al. Enhanced electrical properties of CaCu3Ti4O12 ceramics by spark plasma sintering: Role of Zn and Al co-doping // J. Alloys Comp. 2019. V. 792. P. 1079 – 1087.
110. Jutapol Jumpatam, Areey Mooltang, Bundit Putasaeng, et al. Effects of Mg2+ doping ions on giant dielectric properties and electrical responses of Na1/2Y1/2Cu3Ti4O12 ceramics // Ceramics International. 2016. V. 42. P. 16287 – 16295.
111. Jutapol Jumpatam, Bundit Putasaeng, Teerapon Yamwong, et al. Enhancement of giant dielectric response in Ga-doped CaCu3Ti4O12 ceramics // Ceramics International. 2013. V. 39. P. 1057 – 1064.
112. Yongping Pun, Yao Hu, Peikui Wang, et al. Effect of kaolinite-doping on the microstructure and the dielectric properties of CaCu3Ti4O12 ceramics // Ceramics International. 2015. V. 41. P. S818 – S822.
113. Jakkree Boonlakhorn, Pinit Kidkhunthod, Prasit Thongbai. A novel approach to achieve high dielectric permittivity and low loss tangent in CaCu3Ti4O12 ceramics by co-doping with Sm3+ and Mg2+ ions // Journal of the European Ceramic Society. 2015. V. 35. P. 3521 – 3528.
114. Renzhong Xue, Gaoyang Zhao, Jing Chen, et al. Effect of doping ions on the structural defect and the electrical behavior of CaCu3Ti4O12 ceramics // Materials Research Bulletin. 2016. V. 76. P. 124 – 132.
115. Dong Xu, Xianning Yue, Yudong Zhang, et al. Enhanced dielectric properties and electrical responses of cobalt doped CaCu3Ti4O12 thin films // Journal of Alloys and Compounds. 2019. V. 773. P. 853 – 859.
116. Li M., Liu Q., Li C. X. Study of the dielectric responses of Eu-doped CaCu3Ti4O12 // J. Alloys Comp. 2017. V. 699. P. 278 – 282.
117. Vinod Kumar, Atendra Kumar, Manish Kumar Verma, et al. Mandal Investigation of dielectric and electrochemical behavior of CaCu3–xMnxTi4O12 (x = 0, 1) ceramic synthesized through semi-wet route // Materials Chemistry and Physics. 2020. V. 245. P. 122804.
118. Rai A. K., Mandal K. D., Kumar D., Parkash O. Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route // J. Alloys Comp. 2010. V. 491. P. 507 – 512.
119. Li T., Chen J., Liu D., et al. Effect of NiO-doping on the microstructure and the dielectric properties of CaCu3Ti4O12 ceramics // Ceram. InterN. 2014. V. 40. P. 9061 – 9067.
120. Senda S., Rhouma S., Torkani E., et al. Effect of nickel substitution on electrical and microstructural properties of CaCu3Ti4O12 ceramic // J. Alloys Comp. 2017. V. 698. P. 152 – 158.
121. Ga?bel F., Khlifi M., Hamdaoui N., et al. Conduction mechanisms study in CaCu2.8Ni0.2Ti4O12 ceramics sintered at different temperatures // J. Alloy. Compd. 2020. V. 828. P. 15437.
122. Ga?bel F., Khlifi M., Hamdaoui N., et al. Conduction mechanisms study in CaCu2,8Ni0,2Ti4O12 ceramics sintered at different temperatures. // J. Alloy. Compd. 2020. V. 828. P. 154373.
123. Krohns S., Lunkenheimer P., Loidl A. Colossal dielectric constants in La15/8Sr1/8NiO4 IOP Conf. Ser.: Mater // Sci. Eng. 2010. V. 8. P. 012014.
124. Liu L., Ren S., Liu J., et al. Localized polarons and conductive charge carriers: understanding CaCu3Ti4O12 over a broad temperature range // Phys. Rev. B. 2019. V. 99. P. 094110.
125. Krohns S., Lunkenheimer P., Kant Ch., et al. Colossal dielectric constant up to gigahertz at room temperature // Appl. Phys. Lett. 2009. V. 94. P. 122903.
126. Sippel S. P., Krohns S., Thoms E., et al. Dielectric signature of charge order in lanthanum nickelates // European Physical Journal B. 2012. V. 85, No. 7. P. 235.
127. Chupakhina T. I., Gyrdasova O. I., Vladimirova E. V., Samigullina R. F. New ways to synthesize multifunctional ceramics La2–xSrxNiO4 // Russian Journal of Inorganic Chemistry. 2015. V. 60. P. 1184 – 1192.
Статью можно приобрести
в электронном виде!
PDF формат
500
DOI: 10.14489/glc.2024.03.pp.044-059
Тип статьи:
Обзорная статья
Оформить заявку