Илья Сергеевич Гришин – аспирант, кафедра технологии неорганических веществ, Ивановский государственный химико-технологический университет, Иваново, Россия
Николай Николаевич Смирнов – д-р техн. наук, профессор, доцент, кафедра технологии неорганических веществ, Ивановский государственный химико-технологический университет, Иваново, Россия
Дарья Николаевна Яшкова – канд. техн. наук, науч. сотрудник, Институт химии растворов им. Г. А. Крестова РАН, Иваново, Россия
1. Stabler C., Ionescu E., Graczyk-Zajac M., et al. Silicon oxycarbide glasses and glass-ceramics: “All-Rounder” materials for advanced structural and functional applications // Journal of the American Ceramic Society. 2018. V. 101. P. 4817 – 4856.
2. Widgeon S. J., Sen S., Mera G., et al. 29Si and 13C solid?state NMR spectroscopic study of nanometer?scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics // Chemistry of Materials. 2010. V. 22. P. 6221 – 6228.
3. Marchewka J., Jelen P., Rutkowska I., et al. Chemical structure and microstructure characterization of ladder-like silsesquioxanes derived porous silicon oxycarbide materials // Materials. 2021. V. 14. P. 1340 – 1352.
4. Mera G., Gallei M., Bernard S., et al. Ceramic nanocomposites from tailor-made preceramic polymers // Nanomaterials. 2015. V. 5. P. 468 – 540.
5. Lu K. Porous and high surface area silicon oxycarbide-based materials – a review // Materials Science and Engineering: Reports. 2015. V. 97. P. 23 – 49.
6. Colombo P., Mera G., Riedel R., et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics // Journal of the American Ceramic Society. 2010. V. 93. P. 1805 – 1837.
7. Wen Q., Yu Z., Riedel R. The fate and role of in situ formed carbon in polymer-derived ceramics // Progress in Materials Science. 2020. V. 109. P. 100623.
8. Latournerie J., Dempsey P., Hourlier-Bahloul D., et al. Silicon oxycarbide glasses. Part 1. Thermochemical stability // Journal of the American Ceramic Society. 2006. V. 89. P. 1485 – 1491.
9. Sousa B. F., Yoshida I. V. P., Ferrari J. L., et al. Silicon oxycarbide glasses derived from polymeric networks with different molecular architecture prepared by hydrosilylation reaction // Journal of Materials Science. 2013. V. 48, No. 5. P. 1911 – 1919.
10. Walter S., Soraru G. D., Br?quel H., et al. Microstructural and mechanical characterization of sol gel-derived Si–O–C glasses // Journal of the European Ceramic Society. 2002. V. 22, No. 13. P. 2389 – 2400.
11. Yu S., Tu R., Goto T. Preparation of SiOC nanocomposite films by laser chemical vapor deposition // Journal of the European Ceramic Society. 2016. V. 36. P. 403 – 409.
12. Zare A., Su Q., Gigax J., et al. Effects of ion irradiation on chemical and mechanical properties of magnetron sputtered amorphous SiOC // Nuclear Instruments and Methods in Physics Research Section B. 2019. V. 446. P. 10 – 14.
13. Mazo M. A., Palencia C., Nistal A., et al. Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering // Journal of the European Ceramic Society. 2012. V. 32. P. 3369 – 3378.
14. Grishin I. S., Smirnov N. N., Smirnova D. N. Mechanochemical synthesis of porous silicon oxycarbide composites // Inorganic Materials: Applied Research. 2023. V. 14. P. 800 – 808.
15. Adam M., Vakifahmetoglu C., Colombo P., et al. Polysiloxane-derived ceramics containing nanowires with catalytically active tips // Journal of the American Ceramic Society. 2013. V. 97, No. 3. P. 959 – 966.
16. Kunin A. V., Ilyin A. A., Morozov L. N., et al. Catalysts and adsorbents for conversion of natural gas, fertilizers production, purification of technological liquids // ChemChemTech. 2023. V. 66, No. 7. P. 132 – 150.
17. Hojamberdiev M., Prasad R. M., Morita K., et al. Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water // Applied Catalysis B: Environmental. 2012. V. 115. P. 303 – 313.
18. Wasan Awin E., Lale A., Kumar K., et al. Novel precursor-derived meso-/macroporous TiO2/SiOC nanocomposites with highly stable anatase nanophase providing visible light photocatalytic activity and superior adsorption of organic dyes // Materials. 2018. V. 11, No. 3. P. 362.
19. Manoj B., Kunjomana A. G. Study of stacking structure of amorphous carbon by X-ray diffraction technique // International Journal of Electrochemical Science. 2012. V. 7. P. 3127 – 3134.
20. Nabil M., Mahmoud K. R., El-Shaer A., et al. Preparation of crystalline silica (quartz, cristobalite, and tridymite) and amorphous silica powder (one step) // Journal of Physics and Chemistry of Solids. 2018. V. 121. P. 22 – 26.
21. Safri A., Fletcher A. J. Concentration dependence of TiO2 nanoparticles in carbon xerogels on adsorption–photodegradation applications // Gels. 2023. V. 9, No. 6. P. 468.
22.Feng J., Xiao Y., Jiang Y. Synthesis, structure, and properties of silicon oxycarbide aerogels derived from tetraethylortosilicate/polydimethylsiloxane // Ceramics International. 2015. V. 41. P. 5281 – 5286.