Представлен обзор диэлектрических свойств керамических материалов на основе твердых растворов титанатов щелочноземельных металлов со структурой перовскита. Определены диапазоны растворимости компонентов двух- и трехфазных твердых растворов и показано влияние соотношений концентраций компонентов, методов получения и технологических параметров на диэлектрические свойства керамики. На основе литературных данных впервые составлена трехкомпонентная фазовая диаграмма для BaTiO3, CaTiO3 и SrTiO3, на которой показаны величины относительной диэлектрической проницаемости, характерные для различных областей на фазовой диаграмме. Выяснено, что наибольшими значениями относительной диэлектрической проницаемости (>700) обладают керамики с содержанием Ba2+ > 40 мол. %, Sr2+ < 60 мол. % и Ca2+ < 40 мол. %, и повышение доли Sr2+ и Ca2+ ведет к ее существенному снижению.
Арсений Николаевич Хрусталев – инженер, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
Виктория Евгеньевна Базарова – инженер, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
Елизавета Дмитриевна Верхова – инженер, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
Левко Андреевич Арбанас – инженер, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
Иван Дмитриевич Акиньшин – инженер, лаборатория керамических материалов и технологий, Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» (РТУ МИРЭА), Москва, Россия
1. Ротенберг Б. А. Керамические конденсаторные диэлектрики. СПб.: Типография ОАО НИИ «Гириконд, 2000. Т. 246.
2. Meyer H. W., Carpenter M. A., Becerro A. I., Seifert F. Hard-mode infrared spectroscopy of perovskites across the CaTiO3–SrTiO3 solid solution // American Mineralogist. 2002. V. 87, No. 10. P. 1291 – 1296.
3. Zhang G. F., Liu H., Yao Z, et al. Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics // Journal of Materials Science: Materials in Electronics. 2015. V. 26. P. 2726 – 2732.
4. Anwar S., Lalla N. P. Effect of oxygenation on the structural and dielectric properties of Sr1?xCaxTiO3 with 0.20 ? x ? 0.40 // Applied Physics Letters. 2008. V. 92, No. 21.
5. Laasri H. A., Fasquelle D., Tachafine A., et al. Investigation of Sr1-xCaxTiO3 ceramics dedicated to high-frequency lead-free components // Functional Materials Letters. 2018. V. 11, No. 5. P. 1850005.
6. May Kalayar Kyaing, Amy Aung, Ohnmar Swe, Shwe Sin Oo. Effects of strontium, barium and tin doping on electrical properties of calcium titanate ceramics for capacitor applications // University of Yangon Research Journal. 2022. V. 11, No. 2. P. 299 – 308.7. Anwar S., Lalla N. P. Space group analysis of Sr1?xCaxTiO3 ceramics with x = 0.20, 0.27 and 0.30 through electron diffraction // Journal of Physics: Condensed Matter. 2007. V. 19, No. 43. P. 436210.8. Chakraborty P., Choudhury P. R., Krupanidhi S. B. Structural and dielectric behavior of pulsed laser ablated Sr0.6Ca0.4TiO3 thin film and asymmetric multilayer of SrTiO3 and CaTiO3 // Journal of crystal growth. 2011. V. 337, No. 1. P. 7 – 12.
9. Anwar S., Lalla N. P. Occurrence of a new superlattice phase across the antiferroelectric phase transition in Sr1?xCaxTiO3 (x = 0.30 and 0.40) // Journal of Physics: Condensed Matter. 2008. V. 20, No. 32. P. 325231.10. Ranjan R., Pandey D. Antiferroelectric phase transition in (Sr1-xCax)TiO3 (0.12 < x ? 0.40): I. Dielectric studies // Journal of Physics: Condensed Matter. 2001. V. 13, No. 19. P. 4239. 11. Kim S. W., Choi H. I., Lee M. H., et al. Electrical properties and phase of BaTiO3–SrTiO3 solid solution // Ceramics International. 2013. V. 39. P. S487 – S490.12. Pullar R. C., Zhang Y., Chen L., et al. Manufacture and measurement of combinatorial libraries of dielectric ceramics: Part II. Dielectric measurements of Ba1? xSrxTiO3 libraries // Journal of the European Ceramic Society. 2007. V. 27, No. 16. P. 4437 – 4443.13. Zhou L., Vilarinho P. M., Baptista J. L. De-pendence of the structural and dielectric properties of Ba1-xSrxTiO3 ceramic solid solutions on raw material processing // Journal of the European Ceramic Society. 1999. V. 19, No. 11. P. 2015 – 2020.14. Alexandru H. V., Berbecaru C., Stanculescu F., et al. Ferroelectric solid solutions (Ba, Sr)TiO3 for microwave applications // Materials Science and Engineering: B. 2005. V. 118, No. 1 – 3. P. 92 – 96.15. Arshad M., Huiling D., Sufyan J. M., et al. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics // Ceramics International. 2020. V. 46, No. 2. P. 2238 – 2246.16. Tusseau-Nenez S., Ganne J.-P., Maglione M., et al. BST ceramics: effect of attrition milling on dielectric properties // Journal of the European Ceramic Society. 2004. V. 24, No. 10–11. P. 3003 – 3011.17. ?miga W., Sitko D., Piekarczyk W., et al. Composition-related structural, thermal and mechanical properties of Ba1?xSrxTiO3 ceramics (0 ? x ? 0.4) // Phase Transitions. 2015. V. 88, No. 7. P. 716 – 725.18. Maity S., Sasmal A., Sen S. Comprehensive characterization of Ba1?xSrxTiO3: Correlation between structural and multifunctional properties // Journal of Alloys and Compounds. 2021. V. 884. P. 161072.19. Ge P. Z., Tang X. G., Liu Q. X., et al. Temperature-dependent dielectric relaxation and high tunability of (Ba1-xSrx)TiO3 ceramics // Journal of Alloys and Compounds. 2018. V. 731. P. 70 – 77.20. Xing Y., Liang H., Li X., Si L. High-frequency dielectric properties of BSTO ceramic prepared with hydrothermal synthesized SrTiO3 and BaTiO3 powders // Particuology. 2009. V. 7, No. 5. P. 414 – 418.21. Mudinepalli V. R., Feng L., Lin W. C., Murty B. S. Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics // Journal of Advanced Ceramics. 2015. V. 4. P. 46 – 53.22. Chen X. M., Wang T., Li J. Dielectric characteristics and their field dependence of (Ba, Ca)TiO3 ceramics // Materials Science and Engineering: B. 2004. V. 113, No. 2. P. 117 – 120.23. Wang X., Yamada H., Xu C.-N. Large electrostriction near the solubility limit in BaTiO3–CaTiO3 ceramics // Applied Physics Letters. 2005. V. 86, No. 2. P. 022905 – 022909.24. Baskaran N., Chang H. Thermo-Raman and dielectric constant studies of CaxBa1-xTiO3 ceramics // Materials Chemistry and Physics. 2003. V. 77, No. 3. P. 889 – 894.25. Chen C. Effect of Ca substitution sites on dielectric properties and relaxor behavior of Ca doped barium strontium titanate ceramics // Journal of Materials Science: Materials in Electronics. 2015. V. 26. P. 2486 – 2492.26. Borkar S. N., Aggarwal P., Deshpande V. K. Effect of calcium substitution on structural, dielectric, ferroelectric, piezoelectric, and energy storage properties of BaTiO3 // Current Applied Physics. 2022. V. 39. P. 205 – 213.27. Rashwan G. M., Ebnalwaleda A. A., Gerges M. K., Mostafa M. Preparation and characterization and dielectric properties of (Ba0.95Ca0.05)TiO3 ceramic material // International Journal of Thin Film Science and Technology. 2021. V. 10, No. 3.28. Chen L., Fan H. Effects of excess barium on the structure and electrical properties of (Ba, Ca)TiO3 piezoelectric ceramics with high mechanical quality factors // Journal of Wuhan University of Technology-Mater. Sci. Ed. 2018. V. 33, No. 5. P. 1039 – 1045.29. Banno K., Koga T., Takeda T., et al. Dielectric properties in the insoluble compositions of BaTiO3–CaTiO3 ceramics // Key Engineering Materials. 2009. V. 388. P. 225 – 228.30. Tanaka D., Yamazaki J., Furukawa M., Tsukada T. High power characteristics of (Ca, Ba)TiO3 piezoelectric ceramics with high mechanical quality factor // Japanese Journal of Applied Physics. 2010. V. 49, No. 9S. P. 09MD03.31. Suzuki T., Ueno M., Nishi Y., Fujimoto M. Dislocation loop formation in nonstoichiometric (Ba, Ca)TiO3 and BaTiO3 ceramics // Journal of the American Ceramic Society. 2001. V. 84, No. 1. P. 200 – 206.32. Molak A., Winiarski A., Szeremeta A. Z., et al. Electrical features of ferroelectric (Ba0.83Ca0.17)TiO3 ceramics with diffused phase transition under pressure // Journal of Alloys and Compounds. 2021. V. 856. P. 158216.33. Cheng X., Shen M. Enhanced spontaneous polarization in Sr and Ca co-doped BaTiO3 ceramics // Solid state communications. 2007. V. 141, No. 11. P. 587 – 590. 34. Wang X., Zhang L., Liu H., et al. Dielectric nonlinear properties of BaTiO3–CaTiO3–SrTiO3 ceramics near the solubility limit // Materials Chemistry and Physics. 2008. V. 112, No. 2. P. 675 – 678.35. Qin B., Jin D., Cheng J., Meng Z. Dielectric properties of (Ba, Sr, Ca)TiO3 ceramics for tunable microwave devices // 2006 15th ieee international symposium on the applications of ferroelectrics. IEEE. 2006. P. 368 – 371.36. Berenov A., Le Goupil F., Alford N. Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds // Scientific reports. 2016. V. 6, No. 1. P. 28055. 37. Kyaing M. K., Aung A., Swe O., Oo S. S. Effects of strontium, barium and tin doping on electrical properties of calcium titanate ceramics for capacitor applications // University of Yangon Research Journal. 2022. V. 11, No. 2. P. 299 – 308. 38. Zhang L., Wang X., Liu H., et al. Structural and dielectric properties of BaTiO3–CaTiO3–SrTiO3 ternary system ceramics // Journal of the American Ceramic Society. 2010. V. 93, No. 4. P. 1049 – 1055. 39. Feliksik K., Kozielski L., Szafraniak-Wiza I., et al. Dielectric and impedance studies of (Ba, Ca)TiO3 ceramics obtained from mechanically synthesized powders // Materials. 2019. V. 12, No. 24. P. 4036. 40. Szafraniak-Wiza I., Kozielski L., Sebastian T. Preparation and properties of Ba1?xCaxTiO3 nanopowders obtained by mechanochemical synthesis // Phase Transitions. 2016. V. 89, No. 7–8. P. 803 – 807. 41. Khedhri M. H., Abdelmoula N., Khemakhem H., et al. Structural, spectroscopic and dielectric properties of Ca-doped BaTiO3 // Applied Physics A. 2019. V. 125. P. 1 – 13.42. Li L. Y., Tang X. G. Effect of electric field on the dielectric properties and ferroelectric phase transition of sol-gel derived (Ba0.90Ca0.10)TiO3 ceramics // Materials Chemistry and Physics. 2009. V. 115, No. 2–3. P. 507 – 511. 43. Han L. R., Fu W. G., Deng X. Y., et al. Prepa-ration and ferroelectric properties of (Ba0.7Ca0.3)TiO3 ceramics // Advanced Materials Research. 2011. V. 148. P. 1016 – 1020.44. Yang X. L., Deng X. Y., Han L. R., et al. Preparation and ferroelectric properties of sol-gel derived (Ba0.95Ca0.05)TiO3 ceramics // Advanced Materials Research. 2012. V. 418. P. 362 – 367.45. Shandilya M., Rai R., Zeb A., Kumar S. Modification of structural and electrical properties of Ca element on barium titanate nano-material synthesized by hydrothermal method // Ferroelectrics. 2017. V. 520, No. 1. P. 93 – 109. 46. Jongprateep O., Sato N. Effects of Ba concentrations and sintering temperature on dielectric properties of Ba-doped calcium titanate // Materials Today: Proceedings. 2018. V. 5, No. 3. P. 9298 – 9305. 47. Jongprateep O., Khongnakhon T., Jantaratana P., Rugthaicharoencheep S. Effects of Ca addition on chemical composition, microstructure and dielectric properties of BaTiO3 // Applied Mechanics and Materials. 2014. V. 575. P. 231 – 237.48. Singh L., Kim I. W., Sin B. C., et al. Combustion synthesis of nanostructured Ba0.8(Ca, Sr)0.2TiO3 ceramics and their dielectric properties // Ceramics International. 2015. V. 41, No. 9. P. 12218 – 12228.49. Sakabe Y., Wada N., Hiramatsu T., Tonogaki T. Dielectric properties of fine-grained BaTiO3 ceramics doped with CaO // Japanese journal of applied physics. 2002. V. 41, No. 11S. P. 6922.50. Wu J., Zhao G., Pan C., et al. Lattice disorder effect on the structural, ferroelectric and electrocaloric properties of (Ba, Sr, Ca)TiO3 ceramics // Journal of Alloys and Compounds. 2022. V. 915. P. 165433.51. Xu H., Jin D., Wu W., et al. Intra-grain composition nonuniform barium strontium calcium titanate ceramics by sol-gel pervasion techniques // Journal of Physics D: Applied Physics. 2009. V. 42, No. 6. P. 065403.52. Jongprateep O., Sato N. Effects of sintering temperatures on microstructure and dielectric constant of Ba0.05SrxCa0.95-xTiO3 where (x = 0, 0.475 and 0.95) // Materials Today: Proceedings. 2019. V. 17. P. 1898 – 1905.53. Rusevich L. L., Zvejnieks G., Kotomin E. A., et al. Theoretical and experimental study of (Ba, Sr) TiO3 perovskite solid solutions and BaTiO3/SrTiO3 heterostructures // The Journal of Physical Chemistry C. 2019. V. 123, No. 4. P. 2031 – 2036.54. Lu Z. Y., Wu J. Q., Chen Z. W. (Ca, Sr, Ba)TiO3-based dielectrics sintered in reducing atmosphere // Key Engineering Materials. 2007. V. 336. P. 114 – 117.
Статью можно приобрести
в электронном виде!
PDF формат
700 руб
DOI: 10.14489/glc.2025.05.pp.041-055
Тип статьи:
Обзорная статья
Оформить заявку